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Abstract

When devising a course of treatment for a patient, doctors often have
little quantitative evidence on which to base their decisions, beyond their
medical education and published clinical trials. Stanford Health Care
alone has millions of electronic medical records (EMRs) that are only just
recently being leveraged to inform better treatment recommendations.
These data present a unique challenge because they are high-dimensional
and observational. Our goal is to make personalized treatment recom-
mendations based on the outcomes for past patients similar to a new
patient. We propose and analyze three methods for estimating heteroge-
neous treatment effects using observational data. We compare the perfor-
mance of these methods in simulation with the gradient forest of Athey
et al. (2017).

1 Introduction

In February 2017, at the Grand Rounds of Stanford Medicine, one of us (NS)
unveiled a new initiative — the Informatics Consult. Through this service,
clinicians can submit a consultation request online and receive a report based on
insights drawn from hundreds of millions of electronic medical records (EMRs)
from Stanford Health Care. While the system is in its early stages, a future
version will include treatment recommendations: helping a doctor to choose
between treatment options for a patient, in cases where there is no randomized
controlled trial (RCT) which compares the options. This announcement was met
with excitement from the doctors in attendance, considering that they generally
need to make decisions without any support from quantitative evidence (about
95% of the time) (Shah, 2016). Building such a system is a priority in many
medical centers in the U.S. and around the world.

The problem setting on which this paper focuses is when a doctor is presented
with a patient who has some medical ailment, and the doctor is considering one
or more treatment options. A relevant question from the patient’s perspective is,
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what is the effect of these treatments on patients like me? Devising a meaningful
definition for “patients like me” is especially difficult given the high-dimensional
nature of the problem: We observe thousands of features describing each pa-
tients, any of which could be used to describe patient similarity. The other
significant complication is that our goal is to infer causal effects from observa-
tional data. The task of mining EMRs to support physician decision-making is
what motivates this paper. We propose and study methods for estimation and
inference of heterogeneous treatment effects, for both randomized experiments
and observational studies. We focus on the case of a choice between two treat-
ments, which for the purposes of this manuscript we label as “treatment” and
“control”.

In detail, we have an n×p matrix of features X, a treatment indicator vector
T ∈ {0, 1}n, and a vector of quantitative responses Y ∈ Rn. Let Xi denote the
ith row of X, likewise Ti and Yi. We assume the n observations (Xi, Ti, Yi) are
sampled i.i.d. from some unknown distribution. The number of treated patients
is N1 = |{i : Ti = 1}|, and the number of control patients is N0 = |{i : Ti =
0}|. We adopt the Neyman–Rubin potential outcomes model (Splawa-Neyman

et al., 1990; Rubin, 1974): each patient i has potential outcomes Y
(1)
i and Y

(0)
i ,

only one of which is observed. Y
(1)
i is the response that the patient would

have under treatment, and Y
(0)
i is the response the patient would have under

control. Hence the outcome that we actually observe is Yi = Y
(Ti)
i . We consider

both randomized controlled trials, where Ti is independent of all pre-treatment
characteristics, (

Xi, Y
(0)
i , Y

(1)
i

)
⊥⊥ Ti, (1)

and observational studies, where the distribution of Ti is dependent on the
covariates. This scenario is discussed in further detail in Section 2.1.

We describe four important functions for modelling data of this type. The
first is the propensity function, which gives the probability of treatment assign-
ment, conditional on covariates:

π(x) ≡ P(T = 1|X = x). (2)

The next two functions are the conditional mean functions: the expected re-
sponse given treatment and the expected response given control.

µ1(x) ≡ E[Y |X = x, T = 1] and µ2(x) ≡ E[Y |X = x, T = 0].

The fourth function, and the one of greatest interest, is the treatment effect
function, which is the difference between the two conditional means:

τ(x) ≡ µ1(x)− µ0(x).

We seek regions in predictor space where the treatment effect is relatively
large or relatively small. This is particularly important for the area of personal-
ized medicine, where a treatment might have a negligible effect when averaged
over all patients but could be beneficial for certain patient subgroups.
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An outline of this paper is as follows. Section 2 reviews related work. In Sec-
tion 3 we describe the two main high-level approaches to the estimation of het-
erogeneous treatment effects: transformed outcome regression and conditional
mean regression. In Section 4 we introduce pollinated transformed outcome
(PTO) forests, while causal boosting is proposed in Section 5. Causal MARS
is the focus of Section 6. In Section 7 we report the results of a simulation
study comparing all of these methods, and a real data application is illustrated
in Section 8. We end with a discussion.

2 Related work

Early work on heterogeneous treatment effect estimation (Gail and Simon, 1985)
was based on comparing pre-defined subpopulations of patients in randomized
experiments. To characterize interactions between a treatment and continuous
covariates, Bonetti and Gelber (2004) formalized the subpopulation treatment
effect patter plot (STEPP). Sauerbrei et al. (2007) proposed an efficient algo-
rithm for flexible model-building with multivariable fractional polynomial inter-
action (MFPI) and compared the empirical performance of MFPI with STEPP.

Identifying subgroups within the patient population is becoming especially
problematic in high-dimensional data, as in EMRs. In recent years, a great
amount of work has been done to apply methods from machine learning to let
the data inform what are the important subgroups in terms of treatment effect.
Su et al. (2009) proposed interaction trees for adaptively defining subgroups
based on treatment effect. Athey and Imbens (2016) proposed causal trees,
which are similar, and constructed valid confidence intervals. Wager and Athey
(2015) improved on this line of work by growing random forests (Breiman, 2001)
from causal trees. These tree-based methods all use shared-basis conditional
mean regression in the framework of Section 3. An example of a transformed-
outcome estimator is the FindIt method of Imai and Ratkovic (2013) which
trains an adapted support vector machine on a transformed binary outcome.
Tian et al. (2014) introduced a simple linear model based on transformed co-
variates and show that it is equivalent to transformed outcome regression in the
Gaussian case. In a novel approach, Zhao et al. (2012) used outcome weighted
learning to directly determine individualized treatment rules, skipping the step
of estimating individualized treatment effects. The problem of estimating het-
erogeneous treatment effects has also received significant attention in Bayesian
literature. Hill (2011) and Green and Kern (2012) approached the problem us-
ing Bayesian additive regression trees (Chipman et al., 1998), and Taddy et al.
(2016) proposed a method based on Bayesian forests. Chen et al. (2012) devel-
oped a Bayesian method for finding qualitative interactions between treatment
and covariates, and there are other Bayesian methods for flexible nonlinear mod-
elling of interactive/non-additive relationships between covariates and response
(LeBlanc, 1995; Gustafson, 2000).

What all of the above work (except Hill (2011)) have in common is that they
assume randomized treatment assignment. Athey and Imbens (2016) discussed
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the possibility of adapting their method to observational data but go no fur-
ther. Wager and Athey (2015) proposed the propensity forest when treatment
is not randomized, but this method does not target heterogeneity in the treat-
ment effect. Similarly, Xie et al. (2012) model treatment effect as a function
of propensity score, missing out on how it depends on the covariates except
through treatment propensity. Crump et al. (2008) devised a nonparametric
test for the null hypothesis that the treatment effect is constant across patients,
but that is not suited to high-dimensional data. One promising approach which
flexibly handles high-dimensional and observational data is the gradient forest
of Athey et al. (2017)—we compare the performance of our methods with that
of the gradient forest in Section 7.

We are particularly interested in flexible, non-parametric approaches that
can handle large numbers of observations and predictors, and model interactions
between predictors, which none of these papers deal with (except for Zhao et al.
(2012)).

2.1 Propensity score methods

Much of causal inference is based on the propensity score (Rosenbaum and
Rubin, 1983), which is the estimated probability that a patient would receive
treatment, conditioned on the patient’s covariates. If the estimate of the propen-
sity function (2) is π̂(·), then the propensity score for a patient with covariate
vector x is π̂(x). Throughout the present work, we estimate the propensity
function using the probability forests of Malley et al. (2012). We are able to
do so quickly using the fast implement in the R package ranger (Wright and
Ziegler, 2015).

For the estimation of a population-average treatment effect (ATE), propen-
sity score methods for reducing bias in observational studies have been estab-
lished (Austin, 2011). Propensity score matching emulates a randomized control
trial (RCT) by choosing pairs of patients with similar propensity scores, one each
in the treatment and control arms, and discards the unmatched patients. Strat-
ification on the propensity score groups patients into bins of similar propensity
scores to compute the ATE within each bin. The overall ATE is the average of
these treatment effects, weighted by the overall frequency of each bin. Inverse
probability weighting assigns a weight to each patient equal to the inverse of the
propensity score if the patient is treated, or else the inverse of one minus the
propensity score if the patient is not treated. Hence patients who tend to be
under-represented in their arm are given more weight. Propensity score strat-
ification and inverse probability weighting are discussed in more detail in the
appendix, along with an additional method: transformed outcome averaging.

The assumption that enables these methods to generate causal conclusions
from observational data is known alternatingly across the literature as uncon-
foundedness, exogeneity or strong ignorability:

(Y
(1)
i , Y

(0)
i ) ⊥⊥ Ti|Xi
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This is the assumption made in the present work. It means that the relationship
between the potential outcomes and treatment must be fully explained by X.
There can be no additional unmeasured confounding variable which effects a
dependence between potential outcomes and treatment. Note, however, that the
outcome itself is not independent of treatment because the treatment determines
which potential outcome is observed.

Low et al. (2016) cast doubt on the ability of propensity score methods
to adequately account for selection bias in a sophisticated simulation designed
to model reality. Nevertheless, we observe in Section 7 that propensity score
adjustments improve results in non-randomized simulations, which means that
they can be used to help doctors make more informed decisions, so we push
forward with the application of propensity scores.

3 Transformed outcome regression and condi-
tional mean regression

Methods for estimating heterogeneous treatment effects generally fall into one
of two categories: transformed outcome regression or conditional mean regres-
sion. In this section we describe the two approaches and explain why we pre-
fer conditional mean regression. The propensity transformed outcome method
(Section 4) uses a combination of the two approaches, while causal forests (Sec-
tion 2), causal boosting (Section 5), and causal MARS (Section 6) are all con-
ditional mean regression methods.

Transformed outcome regression is based on the same idea as transformed
outcome averaging, which is laid out in detail in the appendix. Given the data
described in Section 1, we define the transformed outcome as

Z ≡ T Y

π(X)
+ (1− T )

−Y
1− π(X)

.

This quantity is interesting because, as shown in the appendix, for any covariate
vector x, E[Z|X = x] = τ(x). So the transformed outcome gives us for each
patient an unbiased estimate of the personalized treatment effect for that pa-
tient. Using this, we can simply use the tools of supervised learning to estimate
a regression function for the mean of Z given X. The weakness of this approach
is that while Z is unbiased for the treatment effect, its variance can be large
due the presence of the propensity score, which can be close to zero or one, in
the denominator.

An alternative approach, conditional mean regression is based on the idea
that because τ(x) is defined as the difference between µ1(x) and µ0(x), if we can
get good estimates of these conditional mean functions, then we have a good
estimate of the treatment effect function. Estimating the functions µ1(x) and
µ0(x) are supervised learning problems. If they are both estimated perfectly,
then there is no need to bother with propensity scores. The problem is that in
practice we never estimate either function perfectly, and differences between the
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covariate distributions in the two treatment groups can lead to bias in treatment
effect estimation if propensity scores are ignored.

We compare these two approaches with a simple example: Consider the task
of estimating an ATE using data from a randomized trial. This may seem far
removed from heterogeneous treatment effect estimation, but we will describe
how two of our methods are based on estimating local ATEs for subpopulations
in our data. In this case, the transformed outcome is

Z = T
Y

1/2
+ (1− T )

−Y
1/2

= 2TY − 2(1− T )Y,

and the corresponding estimate of the ATE is

τ̂TO =
1

n

n∑
i=1

Zi =
2N1Ȳ1 − 2N0Ȳ0

N1 +N0
=

N1

n/2
Ȳ1 −

N0

n/2
Ȳ0,

where Ȳ1 is the average response of patients who received treatment and Ȳ0
is the average response of control patients. Meanwhile the conditional mean
estimator of the ATE would be

τ̂CM = Ȳ1 − Ȳ0.

Here we are implicitly assuming that neither N1 nor N0 is zero. It is worth
noting that

τ̂TO = τ̂CM +
N1 −N0

n
(Ȳ1 + Ȳ0),

so if N1 = N0 or Ȳ1 + Ȳ0 = 0, then τ̂TO = τ̂CM. However N1, N0, Ȳ1 and
Ȳ0 are all random. Given a fixed sample size n, N1 follows a Binomial(n, 1/2)
distribution (truncated to exclude 0 and n), and N0 is the difference between n
and N1. Suppose Ȳ1 and Ȳ0 have normal distributions with variances inversely
proportional to sample size:

Ȳ1 ∼ Normal(µ1, σ
2/N1) and Ȳ0 ∼ Normal(µ0, σ

2/N0).

Note that both τ̂CM and τ̂TO are unbiased for τ ≡ µ1−µ0, but the two estimators
have different variances. Conditioning on N1, the variance of τ̂CM is

E[(τ̂CM − τ)2|N1] = V(Ȳ1 − Ȳ0|N1) = σ2/N1 + σ2/N0

while the variance of τ̂TO given N1 is

E[(τ̂TO−τ)2|N1] = V(τ̂TO|N1)+(E[τ̂TO−τ |N1])2 =
4

n
σ2+

(
N1 −N0

n

)2

(µ1+µ0)2.

So the key is the ratio of the main effect (µ1 + µ0)/2 to the noise level σ. If∣∣∣∣µ1 + µ0

2σ

∣∣∣∣ <
√
N−11 +N−10 − 4n−1

(N1 −N0)2
,
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Figure 1: The variance of two ATE estimators for n = 10, 30, 100 and 300, as
the ratio of the absolute main effect |µ1 + µ0|/2 to the noise level σ increases
from 0 to 0.5.
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then τ̂TO has less variance. If the inequality is reversed, then τ̂CM has less vari-
ance. Marginalizing over the truncated binomial distribution of N1 is difficult
to do analytically, but we can numerically estimate the marginal variance of
each estimator for any n > 1. Figure 1 illustrates the results for a few different
choices of n.

We observe that for small n, τ̂TO can have slightly smaller variance than
τ̂CM if the absolute value of the main effect is close to zero. But this advantage
tends to zero as n increases, and τ̂TO has much greater variance if the main
effect is large. In conclusion, we prefer the conditional mean estimator because
of the potentially high variance of the transformed outcome estimator. This
is reflected in the following sections as all of our methods use some version of
conditional mean regression.

3.1 Shared-basis conditional mean regression

In high-dimensional data it is often necessary to choose a subset of variables
to include in a model. Beyond that, nonparametric methods adaptively choose
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transformations of variables. Collectively, we refer to the variables and transfor-
mations selected as the basis of the regression. In conditional mean regression
it is to be expected that the selected basis be different between the two re-
gression functions. This can cause differences between the conditional means
attributable not to evidence of a heterogeneous treatment effect but rather due
to chance in basis selection.

To address this all of our methods jointly choose the same basis for both
conditional mean regressions. In detail, this shared basis is chosen adaptively
to best explain heterogeneity in the treatment effect, rather than explaining the
variance in either treatment group. How exactly this shared basis is determined
is different for each method.

4 Pollinated transformed outcome (PTO) forests

We first present the idea of a pollinated transformed outcome (PTO) forest in
detail and then explain the various components.

In step 1 we compute an unbiased point estimate of the treatment effect for
each individual; then in step 2, we fit a random forest using this effect as the
outcome. In principal, this should estimate our personalized treatment effect.
However, we don’t trust these estimates too much, because the outcome can be
highly variable. But we will put faith in the trees they produced.

Thus in step 3, we “pollinate” the trees separately with the treated and
untreated populations. That is, we send data down each tree and compute new
predictions for each terminal node. In step 4, the difference zi = G1(xi)−G0(xi)
gives us an estimate of the treatment effect. Finally in step 5, we then post-
process these predictions by fitting one more forest, primarily for interpretation.

Figure 2 illustrates the benefits of cross-pollination. In this example n =
100, p = 50 and the response is simulated in each arm according to Yi ∼ N (1−
Xi1+Xi2, 1) for treated patients and Yi ∼ N (Xi1+Xi2, 1) for untreated patients.
Hence the true personalized treatment effect for patient i is 1+2Xi1. In the top
row the treatment is randomly assigned, while in the bottom row, the probability
of treatment assignment is (1 + eXi1+Xi2)−1. The raw estimates correspond to
a random forest (as in step 2) grown to predict the transformed outcome. The
pollinated estimates correspond to re-estimating (as in step 3) the means of the
leaves within each arm. We observe that in each case, the pollination improves
the estimates.

5 Causal boosting

An alternative to a random forest for least squares regression is boosted trees.
Boosting builds up a function approximation by successively fitting weak learn-
ers to the residuals of the model at each step. In this section we generalize least
squares boosting for regression (Friedman, 2001) to the problem of heteroge-
neous treatment effect estimation.

8



Algorithm 1: PTO forest

1. Build a depth-controlled propensity random (regression) forest π̂ using
the treatment indicator as the response. Use regression trees, so that we
estimate the probability of the terminal-node means. If the data are
known to have come from a randomized trial, do not build a random
forest and instead define π̂ to be identically equal to the probability of
treatment assignment.

2. Define the transformed outcome by

Zi = T1
Yi

π̂(Xi)
+ (1− Ti)

−Yi
π̂(Xi)

.

3. For the randomized treatment setting, define the transformed outcome
by

δi = (2Ti − 1)Yi.

Note that if π̂(Xi) is the true probability of receiving treatment given
covariates Xi, then E[Zi|Ti, Xi] = τ(Xi), the true conditional treatment
effect (see appendix for details).

4. Grow a depth-controlled random forest GTOF to δi.

5. Pollinate GTOF separately with the data in the treated group and the
control group to produce two regression forests G1 and G0, respectively.
This entails sending each observation in the treatment group down each
tree in the forest to determine its terminal node and re-estimating the
response in that node to be the average of its observations. The same is
done for the control group.

6. Compute δi = G1(Xi)−G0(Xi).

7. Optionally, fit a random forest S to δi and return S, which predicts the
treatment effect τ̂(x) = S(x). This optional layer of regression also helps
with the interpretability of the results, yielding importance scores for
variables as they relate directly to the estimated treatment effect.
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Figure 2: A comparison of raw and pollinated transformed outcome forests. Each
method is applied to a randomized simulation and a non-randomized simulation,
and we visually compare the estimated treatment effect with the true treatment
effect We see that in each case, the pollination improves the estimates.
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Given data of the form (Xi, Yi), i = 1, ..., n, least squares boosting starts with
a regression function F̂ (x) = 0 and residuals Ri = Yi−F̂ (xi). We fit a regression

tree to Ri, yielding predictions f̂1(x). Then we update F̂ (x)← F̂ (x) + ε · f̂1(x),

and Ri ← Ri − ε · f̂1(xi) and repeat this (say) a few hundred times. The final
prediction is simply F̂ (x), a sum of trees shrunk by ε.

For our current problem, our data has the form (Xi, Ti, Yi), i = 1, ..., n with
Ti ∈ {0, 1}. For now assume randomized treatment assignment. In the next
subsection we show to handle the non-randomized case. Here is how we propose
to generalize least squares boosting. As with causal forests Wager and Athey
(2015), our building block is a causal tree, which returns a function ĝ(x, t). The
estimated causal effect for an observation X = x is τ̂(x) = ĝ(x, 1)− ĝ(x, 0). This
is a standard causal tree, except that for each terminal node, we return the pair
of treatment-specific means rather than the treatment effect. In other words, if
observation Xi = x gets you into terminal node k, where the pair of estimated
means are µ̂1k (treated) and µ̂0k (untreated), then these are the values returned,
respectively, for ĝ(x, 1) and ĝ(x, 0). The algorithm is summarized in Algorithm
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2 below.

Algorithm 2: Causal Boosting

1. Set the outcome Ri = Yi, and define Ĝ0(x, t) = 0.

2. Do k = 1, ...,K

(a) Fit a causal tree ĝk to data (Xi, Ri, Ti).

(b) Set

Ri ← Ri − ε · ĝk(Xi, Ti)

Ĝk ← Ĝk−1 + ε · ĝk.

3. Return ĜK(x, T ).

The estimated treatment effect for any observation x is ĜK(x, 1)−ĜK(x, 0).
Note that this generalizes to loss functions other than squared error. For

example, if the causal tree was trained for a binary outcome, then each terminal
node would return a pair of logits η̂1k = logit[Pr(Y = 1|X = x, T = 1)] and
η̂0k = logit[Pr(Y = 1|X = x, T = 0)]. Thus ĜK(x, T ) would be a function that
returned a pair of logits at x, and hence treatment success probabilities. The
treatment effect would be the appropriate function of these (difference, log-odds
ratio). Other enhancements to boosting, such as stochastic boosting, are also
applicable in the setting.

Note that causal boosting is not strictly a gradient boosting algorithm, be-
cause there is no loss function for which we are evaluating the gradient at each
step, in order to minimize this loss. Rather, causal boosting is an adaptation
of gradient boosting on the observed response, with a different function in each
arm of the data. The adaptation is that we use causal trees as our weak learners
instead of a standard regression technique. This tweak encourages the learned
function to find treatment effect heterogeneities.

5.1 Cross-validation for causal boosting

Unlike random forests, gradient boosting algorithms can over-fit the training
data as the number of trees increases (Hastie et al., 2009). This is because each
successive tree is not built independently of the previous ones but rather with
the goal of fitting to the residuals of the previous trees. Whereas a random
forest will only benefit from using more trees, the number of trees in gradient
boosting is itself an important parameter which needs to be tuned.

Complicating matters, the usual cross-validation framework does not apply
to the setting of estimating a heterogeneous treatment effect because in this
setting each observation does not come with a response corresponding directly
to the function we are interested in estimating. We don’t observe a response
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τi for the ith patient. What we observe is either Y
(0)
i or Y

(1)
i , depending on

whether or not the patient received the treatment.
We describe our approach in the context of a held-out validation set, but

this fully specifies our cross-validation procedure. Cross-validation is simply
validation done by partitioning the training set into several folds and averaging
the results obtained by holding out each fold as a validation set and training on
all other folds. The data in this context are a training set (Xtr,Ttr,Ytr) and a
validation set (Xv,Tv,Yv). After training causal boosting on (Xtr,Ttr,Ytr),
we are left with a sequence of models G1(x, T ), ..., GK(x, T ), and we would like
to evaluate the performance of each of these.

To validate the performance of each of these models, we use a pollination
of the causal boosting model much like step 3 of the PTO forest. We run
through the causal boosting algorithm again, making all the same splits as in
the original training. The difference is in how we estimate the value returned in
each node of each shallow causal tree. As in causal forests and in step 3 of the
transformed outcome forest, we use (X(tr),T(tr),Y(tr)) to populate the nodes
of the constituent causal trees and estimate the ATE within each node. The
residuals ri from the causal boosting algorithm are initialized to be the yi from
the validation set and are updated according to these re-fitted trees. The result
is a new “honest” sequence of models H1(x, T ), ...,HK(x, T ).

We are ready to define our validation error for each of the original models
G1(x, T ), ..., GK(x, T ). The validation error for a causal boosting model with k
trees is given by∑

x∈v
({Gk(x, 1)−Gk(x, 0)} − {HK(x, 1)−HK(x, 0)})2 .

We have several remarks to make about this form. Gk(x, 1) − Gk(x, 0) is the
estimated treatment effect at x, for causal boosting with k trees. HK(x, 1) −
HK(x, 0) is the estimated treatment effect correspond to the maximum number
of trees, using the responses from the validation set. For a large number of trees,
we can be sure that this is over-fitting to the response, and this is the analog
of traditional cross-validation, which compares predictions on the validation set
with observed response in the validation set. This observed response, corre-
sponding to the saturated model, is as over-fitted as possible. Intuitively, we
are comparing our estimated treatment effect for each validation point against
another estimate, which uses the same structure as the model fit to find similar
patients and estimate the treatment effect based on those similar patients, some
of whom will have received treatment, some of who will have received control.
The better the structure is that causal boosting has learned for the heteroge-
neous treatment effect, the more the local ATE in the training set will mirror
the local ATE in the validation set. For the results in Section 7, we use this
procedure to do cross-validation for causal boosting.
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5.2 Within-leaf propensity adjustment

When the goal is to estimate not an ATE but rather an individualized treatment
effect, the propensity score methods described in Section 2.1 and in the appendix
do not immediately extend. Consider for example propensity score stratification.
Because each patient belongs to only one stratum of propensity score, we can
not average treatment effect estimates for a patient across strata. Technically,
if we were to fit a causal boosting model within each stratum, each of these
models would be able to make a prediction for the query patient. But then all
but one of these models would be unwisely extrapolating outside of its training
set to make this prediction. An alternative to propensity score stratification,
inverse probability weighting is still viable, but the volatility of this method is
exacerbated by the attempt to estimate a varying treatment effect, rather than
a constant one.

Within each leaf of a causal tree, however, we estimate an ATE. This is where
causal boosting adjusts for non-random treatment assignment, using propensity
score stratification to reduce the bias in the estimate of the within-leaf ATE.
Before initiating the causal boosting algorithm, we begin by evaluating the
propensity score for each patient, which is an estimate of probability of being
assigned the treatment, conditioned on the observed covariates. Any binomial
regression technique could be used here. We fit a probability forest (Malley
et al., 2012), which is similar to a random forest for classification (Breiman,
2001) except that each tree returns a probability estimate rather than a classifi-
cation. The trees are combined by averaging the probability estimates and not
by majority vote. We denote the treatment assignment probability as a function
of the covariates by π(x) ≡ P(T = 1|X = x) and the corresponding propensity
scores by π̂i ≡ π̂(xi).

We group the patients into S strata of similar propensity scores denoted
1, ..., S. For example, there could be S = 10 strata, with the first comprising
π̂ ∈ [0, 0.1) and the last comprising π̂ ∈ [0.9, 1], with equal-length intervals
in between. We use si ∈ {1, ..., S} to denote the stratum to which patient i
belongs. Hence the data that we observe within each leaf of a causal tree are
of the form (Xi, si, Ti, Yi) ∈ Rp × {1, ..., S} × {0, 1} × R. We use n` to denote
the number of patients in leaf ` and index these patients by i = 1, ..., n`. The
propensity-adjusted ATE estimate in leaf ` is given by

τ̂` =

∑S
s=1 ns`(Ȳ1s` − Ȳ0s`)∑S

s=1 ns`
, where Ȳts` =

∑n`

i=1 I{Ti=t∧si=s}Yi

nts`
(3)

is the mean response among the treatment (t = 1) or control (t = 0) group in
stratum s, and nts` =

∑n`

i=1 I{si=s} is the corresponding number of patients in
leaf ` for t ∈ {0, 1}, s ∈ {1, ..., S}. Finally, ns` = n1s` + n0s`.

The estimated variance of τ̂` is

V̂ar(τ̂`) =

∑S
s=1 n

2
s`σ̂

2
s`

(
∑S
s=1 ns`)

2
, where σ̂2

s` =
s21s`
n1s`

+
s20s`
n0s`

,
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and s2ts` is the sample variance of the response for arm t of stratum s in leaf `.
Hence, for two candidate daughter leaves ` and r of the same parent, The

natural extension of the squared T-statistic splitting criterion from Athey and
Imbens (2016) is

|τ̂` − τ̂r|√
V̂ar(τ̂`) + V̂ar(τ̂r)

.

This is the propensity-stratified splitting criterion used by causal boosting. This
criterion could also be used by a causal forest as it applies directly to its con-
stituent causal trees.

We use this propensity adjustment not only for determining the split in a
causal tree but also for estimating the treatment effect in the node. Specifically,
the causal tree returns two values in each leaf: the propensity-adjusted mean
response in the treatment and control groups.∑S

s=1 ns`Ȳ1sl∑S
s=1 ns`

and

∑S
s=1 ns`Ȳ0sl∑S
s=1 ns`

.

6 Causal MARS

One drawback to tree-based methods is that because they use the average treat-
ment effect within each leaf as the prediction for that leaf, there could be high
bias in this estimate. This is especially problematic when it comes to confidence
interval construction for personalized treatment effects. The variance of the es-
timated treatment effect is relatively straightforward to estimate, but the bias
presents more of a challenge.

Multivariate adaptive regression splines (MARS, Friedman (1991)) can be
thought of as a modification to CART which alleviates this bias problem. MARS
starts with the constant function f(x) = β0 and considers adding pairs of func-
tions of the form {(xj − c)+, (c − xj)+} and also the products of variables in
the model with these pairs, choosing the pair which lead to the greatest drop in
training error when they are added to their model, with regression coefficients
estimated via OLS. The difference between this and CART is that in CART the
pairs of functions considered are of the form {I{xj−c≥0}, I{c−xj>0}}, and when a
product with one of the included terms in chosen, it replaces the included term
in the model (Hastie et al., 2009).

We propose causal MARS as the adaptation of MARS to the task of treat-
ment effect estimation. We fit two MARS models in parallel in the two arms
(treatment and control) of the data, at each step choosing the same basis func-
tions to add to each model. The criterion that we use identifies the best basis
in terms of explaining treatment effect: we compare the drop in training error
from including the basis in both models with different coefficients to the drop in
training error from including the basis in both models with the same coefficient
in each model. The steps of causal MARS are as follows. The parameter D
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controls the maximum dimension of the regression basis, and in practice we use
11 in our examples. Algorithm 3 has the details.

Algorithm 3: Causal MARS

1. Define F = {{(xj − c)+, (c− xj)+} : c ∈ {Xij}, j ∈ {1, ..., p}}.

2. Initialize B = {1}.

3. For d in 1, ..., D: (growing the model)

(a) For each pair of functions
{f, g} ∈ {{b(x)f∗(x), b(x)g∗(x)} : b ∈ B, {f∗, g∗} ∈ F}:

i.

RSSµ = min
β1,β0

n∑
i=1

(
yi −

∑
b∈B

(β1
b b(xi)I{ti=1} + β0

b b(xi)I{ti=0})

−
∑

h∈{f,g}

βhh(xi)

2

ii.

RSSτ = min
β1,β0

n∑
i=1

(
yi −

∑
b∈B

(β1
b b(xi)I{ti=1} + β0

b b(xi)I{ti=0})

−
∑

h∈{f,g}

(β1
hh(xi)I{ti=1} + β0

hh(xi)I{ti=0})

2

iii.
dRSS = RSSτ −RSSµ

(b) Choose {f, g} which maximize dRSS and add them to B.

4. Backward deletion: delete terms one at a time, using the same criterion
as in the forward stepwise 3(a). Use the out-of-bag error to estimate the
optimal model size.

To reduce the variance of causal MARS, we perform bagging by taking B
bootstrap samples of the original dataset and fitting the causal MARS model
to each one. The estimated treatment effect for an individual is the average of
the estimates for this individual by the B models.

Note that the algorithm described above applies to the randomized case, not
observational data. Given S propensity strata and membership s ∈ 1, ..., S, for
each patient, we use the same basis functions within each stratum but different
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regression coefficients. Within each stratum, the coefficients are estimated sepa-
rately from the coefficients in other strata. Given the entry criterion dRSSs and
number of patients ns in each stratum, we combine these into a single criterion∑
s nsdRSSs. This is the propensity-adjusted causal MARS.

6.1 Confidence intervals

One advantage of the bagging-based methods—causal forest and causal MARS—
is that in the process of computing the treatment-effect estimates, one gets at
no extra cost the computations necessary to estimate the variance of the esti-
mators. Each of the bagged models is based on its own bootstrap re-sampling
of the data, so for each patient we have B re-sampled treatment effect esti-
mates, where B is the number of bags. We propose using the quantiles of these
estimates as the confidence interval for each patient. To construct a (1 − α)
confidence interval, we use the α/2 and 1 − α/2 quantiles of the bootstrapped
estimates as lower and upper bounds, respectively.

Note that this procedure is targeted at the variability of a single causal tree
or a single causal MARS model, but the methods we propose involve averag-
ing these models to reduce their variance. This will make our intervals more
conservative because the variance of the bagged models will be lower than the
variance of the individual models. However, as the results in this section demon-
strate, the conservative nature of these confidence intervals helps with coverage
problems due to the inability to fully remove the bias from the treatment effect
estimates.

Figure 3 shows confidence interval results for causal forest applied to Simula-
tion 8 in Section 7. That section describes in detail our simulation scheme, but
in this section we use it only as an illustration of the confidence interval results.
The left figure shows the average upper and lower bounds of the confidence in-
terval for each patient, across 100 simulations. This demonstrates the difficulty
with constructing confidence intervals for random forest predictions: Because of
the relatively high bias from using the average as the estimate within each leaf,
the confidence intervals do not come close to maintaining (1 − α) coverage for
patients with relatively small or relatively large treatment effects.

This problem for causal forests was the motivation for the development of
causal MARS. By using piecewise linear models instead of piecewise constant
models, MARS can achieve lower bias than regression trees, which is important
for bootstrap confidence-interval construction. Figure 4 shows the results of
constructing confidence intervals for the causal MARS estimates in a single
simulation. The average confidence intervals are more volatile in Figure 4 than
in Figure 3 because causal MARS is a higher-variance method. But we see
that the confidence intervals adhere more closely to the true treatment effect
for this method than for the causal forest. Examining the coverage, we see that
there is still a bias problem for treatment effects near the edges of the range
of values, but the miscoverage is closer to 0.5, an improvement of the coverage
which approaches 1 for causal forest.

Still, bagged causal MARS has not fully mitigated the bias problem. We see
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Figure 3: Confidence intervals for causal forest in Scenario 8 from Section 7.
On the left in blue we plot the true treatment effect for each patient against the
index of the patient, sorted by treatment effect. The thin gray lines show the
average upper and lower confidence interval bounds for each patient, and the
dotted black line smooths over these averages. On the left the thin lines give
the miscoverage rate for each patient, and the thick lines smooth over these thin
lines. These results reflect 100 simulations using 50 bagged causal trees.
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that the miscoverage on bottom is decreasing with the true treatment effect,
and the miscoverage on top is increasing with the true treatment effect. We at-
tempted to address this with a bias correction. We bootstrapped residuals from
the fitted model and applied a standard bootstrap bias correction. The results
of this correction are shown in Figure 5. Here the confidence intervals adhere
even more closely to the true treatment effect, and the coverage is improved.
The miscoverage on either side of the confidence interval is capped at 0.2 when
smoothed, though the target miscoverage rate is 0.1. We have taken steps to-
ward constructing confidence intervals for personalized treatment effects, but it
remains an area for future research.

7 Simulation study

In the design of our simulations to evaluate performance of methods for hetero-
geneous treatment effect estimation, there are four elements to the generation
of synthetic data:

1. The number n of patients in the training set, and the number p of features
observed for each patient.

2. The distribution DX of the feature vectors Xi. Across all scenarios, we
draw odd-numbered features independently from a standard Gaussian dis-
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Figure 4: Confidence intervals for causal MARS in Scenario 8 from Section 7.
On the left in blue we plot the true treatment effect for each patient against
the index of the patient, sorted by treatment effect. The thin gray lines show
the average upper and lower confidence interval bounds for each patient across
100 simulations, and the dotted black line smooths over these averages. On the
left the thin lines give the miscoverage rate for each patient, and the thick lines
smooth over these thin lines. These results reflect 100 simulations using 50
bagged causal MARS models.
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tribution. We draw even-numbered features independently from a stan-
dard Bernoulli distribution.

3. The propensity function π(·), the mean effect function µ(·) and the treat-
ment effect function τ(·). We take the conditional mean effect functions
to be µ1(x) = µ(x) + τ(x)/2 and µ0(x) = µ(x)− τ(x)/2.

4. The conditional variance σ2
Y of Yi given Xi and Ti. This corresponds to

the noise level, and we choose is to make the percentage of null variance
explained of the true model to be roughly 20-25%. This ensures we are
comparing the methods on relevant simulations.

Given the elements above, our data generation model is, for i = 1, ..., n:

Xi
i.i.d.∼ DX

Ti
ind.∼ Bernoulli(π(Xi))

Yi
ind.∼ Normal

(
µ(Xi) + (Ti − 1/2)τ(Xi), σ

2
Y

)
The third element above, encompassing π(·), µ(·) and τ(·), is most interest-

ing. Note that π(·) and µ(·) are nuisance functions, and τ(·) is the function we
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Figure 5: Bias-corrected confidence intervals for causal MARS in Scenario 8
from Section 7. On the left in blue we plot the true treatment effect for each
patient against the index of the patient, sorted by treatment effect. The thin
gray lines show the average upper and lower confidence interval bounds for each
patient across 100 simulations, and the dotted black line smooths over these av-
erages. On the left the thin lines give the miscoverage rate for each patient, and
the thick lines smooth over these thin lines. These results reflect 100 simulations
using 50 bagged causal MARS models.
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are interested in estimating. In this section, we present two batches of simula-
tions, the first of which represent randomized experiments. The second batch of
simulations represent observational studies. Within each set of simulations, we
make eight different choices of mean effect function and treatment effect func-
tion, meant to represent a wide variety of functional forms: both univariate and
multivariate; both additive and interactive; both univariate and multivariate.
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Table 1: Specifications for the 16 simulation scenarios. The four rows of the
table correspond, respectively, to the sample size, dimensionality, mean effect
function, treatment effect function and noise level. Simulations 1 through 8 use
randomized treatment assignment, meaning π(x) = 1/2. Simulations 9 through
16 have a bias in treatment assignment, specified by (4).

Scenarios 1, 9 2, 10 3, 11 4, 12 5, 13 6, 14 7, 15 8, 16
n 200 200 300 300 400 400 1000 1000
p 400 400 300 300 200 200 100 100

µ(x) f8(x) f5(x) f4(x) f7(x) f3(x) f1(x) f2(x) f6(x)
τ(x) f1(x) f2(x) f3(x) f4(x) f5(x) f6(x) f7(x) f8(x)
σ2
Y 1 1/4 1 1/4 1 1 4 4

The eight functions that we chose are:

f1(x) = 0 f2(x) = 5I{x1>1} − 5 f3(x) = 2x1 − 4

f4(x) = x2x4x6 + 2x2x4(1− x6) + 3x2(1− x4)x6 + 4x2(1− x4)(1− x6) + 5(1− x2)x4x6

+6(1− x2)x4(1− x6) + 7(1− x2)(1− x4)x6 + 8(1− x2)(1− x4)(1− x6)

f5(x) = x1 + x3 + x5 + x7 + x8 + x9 − 2

f6(x) = 4I{x1>1}I{x3>0} + 4I{x5>1}I{x7>0} + 2x8x9

f7(x) =
1

2

(
x21 + x2 + x23 + x4 + x25 + x6 + x27 + x8 + x29 − 11

)

f8(x) =
1√
2

(f4(x) + f5(x))

Each of the eight functions above is centered and scaled so that with re-
spect to the distribution DX , each has mean close to zero and all have roughly
the same variance. Table 1 gives the mean and treatment effect functions for
the eight randomized simulations, in terms of the eight functions above. In
these simulations π(x) = 1/2 for all x ∈ Rp. In addition to the methods de-
scribed in Sections 4, 5 and 6, we include results for two additional estimators
for comparison. The null estimator is simply the difference Ȳ1 − Ȳ0 in mean re-
sponse between treated and untreated patients. This provides a naive baseline.
The other competitor is the gradient forest of Athey et al. (2017), using the
gradient.forest R package made available online by the authors. The results
of the fist batch of simulations are shown in Figure 6.

If we pick “winners” in each of the simulation scenario based on which
method has the lowest distribution of errors, causal MARS would win Scenarios
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Figure 6: Results across eight simulated randomized experiments. For details of
the generating distributions, see Table 1. The seven estimators being evaluated
are: NULL = the null prediction, GF = gradient forest, PTO0 = pollinated
transformed outcome forest (using propensity = 1/2), CB0 = causal boosting,
CM0 = causal MARS. The vertical blue bar shows the standard deviation of the
response, for assessing the practical significance of the difference between the
methods’ performances.
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5, 7 and 8, tying with the pollinated transformed outcome forest in Scenario 4.
The PTO forest would win Scenarios 2 and 3, tying with causal boosting in
Scenario 6. In general all of the methods outperform the null estimator except
in Scenario 1, when the treatment effect is constant, and in Scenario 6, when
the gradient forest perform worst.

The second batch of simulations matches the parameters listed in Table 1:
Scenario 9 is like Scenario 1; Scenario 10 is like Scenario 2; and so on. The
difference is in the propensity function. For this second batch of simulations,
we use

π(x) =
eµ(x)−τ(x)/2

1 + eµ(x)−τ(x)/2
. (4)
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The interpretation of this propensity function is that patients with greater mean
effect are more likely to receive the treatment. This resembles a situation in
which greater values of the outcome are worse for the patient, and only patients
who have need for treatment will receive it. There are many possible forms
for the propensity function, but we focus on this one because it is particularly
troublesome, and a good estimator of the treatment effect needs to avoid the
pitfall of estimating to great an effect because the treated patients have greater
mean effect. This is exactly the kind of bias we are most concerned about in
observational studies. The results of this second batch of simulations are shown
in Figure 7.

In the batch of simulations with biased treatment assignments, propensity-
adjusted causal boosting shines. In six of the eight simulations, causal boosting
as either the lowest error distribution or is one of the two methods with the
lowest error distribution. Curiously, in Scenario 13, unadjusted causal MARS
performs very well, but the propensity adjustment ruins this performance. In
Scenario 15, PTO forest and gradient forest produce the best results though all
of the methods perform well. Overall, across the 16 simulation scenarios, causal
boosting and causal MARS stand out as having the best performance.

8 Application

In September 2016, New England Journal of Medicine opened The SPRINT
Data Analysis Challenge, based on the complete dataset from a randomized
trial of a novel intervention for the treatment of high blood pressure (SPRINT
Research Group, 2015). The goal was open-ended: to draw novel or clinically
useful insights from the SPRINT dataset, possibly in tandem with other publicly
available data.

The intervention in the randomized trial (SPRINT Research Group, 2015)
was a more intensive control of systolic blood pressure (target 120 mm Hg)
than is standard (target 140 mm Hg). The primary outcome of interest was
whether the patient experienced any of the following events: myocardial in-
farction (heart attack), other acute coronary syndrome, stroke, heart failure or
death from cardiovascular causes. The trial, which enrolled 9361 patients, ended
after a median follow-up period of 3.26 years, when researchers determined at
a pre-planned checkpoint that the population-average outcome for the intensive
treatment group (1.65% incidence per year) was significantly better than that
of the standard treatment group (2.19% incidence per year).

In addition to the primary event, for each patient researchers tracked several
other adverse events, as well as 20 baseline covariates recorded at the moment of
treatment assignment randomization: 3 demographic variables, 6 medical his-
tory variables and 11 lab measurements. The question that we seek to answer
in this section is whether we can use these variables to give personalized esti-
mates of treatment effect which are more informative than the population-level
average treatment effect. To answer this question, we apply the gradient forest
and causal MARS to these data.
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Figure 7: Results across eight simulated observational studies, in which treat-
ment is more likely to be assigned to those with a greater mean effect. The
seven estimators being evaluated are: NULL = the null prediction, GF = gradi-
ent forest, PTO = pollinated transformed outcome forest, CB1 = causal boosting
(propensity adjusted), CB0 = causal boosting, CM1 = causal MARS (propensity
adjusted), CM0 = causal MARS. CB0 and CM0 are in gray because they would
not be used in this setting. They are provided for reference to assess the effect
of the propensity adjustment. The vertical blue bar shows the standard deviation
of the response, for assessing the practical significance of the difference between
the methods’ performances.
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Figure 8: Personalized treatment effect estimates from causal boosting and causal
MARS. Each circle represents a patient, who gets a personalized estimate from
each method. The dashed line represents the diagonal, along which the two
estimates are the same.
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Of the 9361 patients who underwent randomization, 1172 (12.5%) died, dis-
continued intervention, withdrew consent or were lost to follow-up before the
conclusion of the trial. There is little evidence (χ2 p-value = 31%) that this
censorship was more common in either arm of the trial. To extract a binary
outcome from these survival data, we use as our response the indicator that a
patient experiences the primary outcome within 1000 days of beginning treat-
ment, ignoring patients who were censored before 1000 days. Additionally, we
dropped the 1.8% of patients who have at least one lab measure missing. This
leaves us with a sample of 7344 patients, which we split into equally sized train-
ing and validation sets.

The results of fitting causal boosting and causal MARS on the training sam-
ple of 3672 patients are shown in Figure 8. We observe that the two methods
yield very different distributions of estimated personalized treatment effects in
the aggregate. Causal boosting produces estimates resembling a normal distri-
bution with a standard deviation of about 3.5% risk. In contrast, causal MARS
estimates almost all patients to have a treatment effect between −5% risk and
+0% risk, but for a small percentage of patients the treatment effect is much
greater or much lesser. The tails of this distribution are much heavier than that
of a normal distribution. In fact, a very small number of patients (0.4% of the
training sample) are not included in this figure because their treatment effect
estimate from causal MARS falls outside of the plotted region.

Figure 9 depicts decision trees which summarize the key inferences made
by causal boosting and causal MARS. Each leaf gives the average estimated
treatment effect for patients who belong to that leaf. Such a decision could be
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Figure 9: Decision trees summarizing with broad strokes the inferences of
causal boosting and causal MARS. The variables are: trr triglcerides (mg/dL)
from blood draw; age (years) age at beginning of trial; glur glucose (mg/dL)
from blood draw; screat creatinine (mg/dL) from blood draw; umalcr albu-
min/creatinine ratio from urine sample; dbp diastolic blood pressure (mm Hg);

egfr estimated glomerular filtration rate (mL/min/1.73m
2
). If the inequality at

a split is true for a patient, then that patient belongs to the left daughter node.

Causal boosting

|trr>=206.5

age>=60.5 glur< 97.5
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reported to a physician to explain the basis for these personalized treatment
effect estimates. According to causal boosting, for example, older patients with
high triglycerides stand to gain more from the intensive blood pressure treat-
ment than younger patients with high triglycerides. Among patients with low
triglycerides and high glucose, those with low creatinine stand to benefit more
from the intensive treatment than those with high creatinine. The decision tree
for causal MARS makes the extreme claim that for patients with urine albu-
min/creatinine ratio above 1874, the average treatment effect is a 21% increase
in risk. Discussions with practitioners suggest that the distribution of personal-
ized treatment effects estimated by causal boosting is more plausible than that
of causal MARS. As such, we focus our interpretation on the results of causal
boosting for the reminder of this section.

To simplify the results even more than the decision tree does, we note that for
both causal boosting and causal MARS, the two features which correlate most to
the personalized treatment effect estimates are estimated glomerular filtration
rate (eGFR) and creatinine. These two variables are highly correlated with each
other, as creatinine is one of the variables used to estimate GFR. Both are used
to assess kidney health, and patients with eGFR below 60 are considered to
have chronic kidney disease. Figure 10 shows the relationship between eGFR
and the estimated personalized treatment effect from causal boosting. Despite
there being no manual notation in the data that there is something special
about an eGFR of 60, we have learned from causal boosting that patients below
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Figure 10: Training set personalized treatment effects, estimated via causal
boosting, versus estimated glomerular filtration rate (eGFR). Patients are strat-
ified according to eGFR on the x-axis, and each point gives the average person-
alized treatment effect among patients in that stratum. Error bars correspond
to one standard error for the mean personalized treatment effect. The vertical
dashed line represents a medical cutoff, below which patients are considered to
suffer from chronic kidney disease.
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this cutoff have less to gain from the intensive blood pressure treatment than
patients above this cutoff.

Note that we are not only interested in whether a patient’s personalized
treatment effect is positive or negative. Intensive control of blood pressure comes
with side effects and should only be assigned to patients for whom the benefit
of reducing the risk of an adverse coronary event is substantial. The results
of causal boosting on the training set would suggest that patients with chronic
kidney disease have less to gain from this treatment than do other patients.

8.1 Validation

The results above tell an interesting story: If you are a patient with chronic
kidney disease (eGFR < 60), you are expected to benefit less from intensive
blood pressure control. As discussed in Section 5.1, validating treatment effect
estimates is challenging because we do not observe the treatment effect for any
individual patient. In this section, we make an attempt to validate the more
general conclusion from the previous section: that the treatment has less benefit
for patients with chronic kidney disease.

Figure 11 shows the results of fitting causal boosting on the held-out vali-
dation set of 3672 patients. We see that the relationship between eGFR and
estimated treatment effect does not tell the same story as in the training set. In
fact, there is no clear relationship between these two variables in the validation
set.

It is possible that we have insufficient power in the validation set to identify
the relationship between eGFR and treatment effect and that with a larger
sample of patients, we would have validated our conclusions from the training
set. It is worth noting that the team from Boston University which placed second
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Figure 11: Validation set personalized treatment effects, estimated via causal
boosting, versus estimated glomerular filtration rate (eGFR). Patients are strat-
ified according to eGFR on the x-axis, and each point gives the average person-
alized treatment effect among patients in that stratum. Error bars correspond
to one standard error for the mean personalized treatment effect. The vertical
dashed line represents a medical cutoff, below which patients are considered to
suffer from chronic kidney disease.
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Causal MARS

in the SPRINT Data Analysis Challenge made the same finding as shown in the
causal boosting results. They found that intensive blood pressure management
does not improve primary outcomes for patients with chronic kidney disease.
Something that the authors do not address is why they chose to analyze patients
with chronic kidney disease. Presumably they used some combination of prior
medical knowledge and manual hypothesis selection. In our training set, we
came to the same conclusion using causal boosting without the benefit of either
of these steps. The dissimilar results on the validation set could be explained
by insufficient power.

9 Discussion

We have proposed and compared a number of different methods for estimating
heterogeneous treatment effects from high-dimensional covariates. The causal
boosting and causal MARS approaches seem particularly promising. More work
is needed in refining and testing these methods, and in the construction of
reliable confidence intervals for the estimated effects.
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A Appendix

In this appendix we outline the already-established techniques for using propen-
sity score to adjust for bias in treatment assignment for observational studies
in which the goal is to estimate a population-average treatment effect (ATE).
Define f(x) the marginal feature density, f1(x) the conditional density of X
given T = 1 (and likewise f0(x)), where T is binary treatment indicator, and
let π1 = P(T = 1) be the marginal proportion of treated. Let µ1(X) =
E[Y |T = 1, X], and likewise µ0(X), and τ(X) = µ1(X) − µ0(X). Finally,
let π(X) = P(T = 1|X) be the treatment propensity.

Transformed outcome averaging

Note that the transformed outcome

Z ≡ T Y

π(X)
+ (1− T )

−Y
1− π(X)

satisfies

E[Z|X] = P(T = 1|X)
1

π(x)
E[Y |T = 1, X]− P(T = 0|X)

1

1− π(x)
E[Y |T = 1, X]

= E[Y |T = 1, X]− E[Y |T = 0, X] = µ1(X)− µ0(X) = τ(X).

Hence if the expectation of Z is evaluated with respect to the distribution
of X,

EX [Z] = EX [E[Z|X]] = EX [τ(X)].

In other words, the transformed outcome is unbiased for the ATE. So a natural
estimator for the ATE in a sample of patients would be the sample mean of the
transformed outcome. This justifies for example using Z as a response to grow
a random forest in our pollinated transformed outcome forest.
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Propensity score stratification

Note that it is not necessarily the case that E[Y |T = 1] = E[µ1(X)|T = 1]
and EX [µ1(X)] are the same; it is possible that conditioning on T changes the
distribution of X and consequently the distribution of µ1(X). This is the essence
of why we cannot ignore non-randomized treatment assignment in observational
studies. However, it is the case that

E[Y |T = 1, π(X)] = E[µ1(X)|π(X)].

To see this, note thatX ⊥⊥ T |π(X) because by assumption T ∼ Binomial(1, π(X)).
Hence the conditional distribution of X given π(X) and T is the same as the
conditional distribution of X given π(X). This implies that

E[Y |T = 1, π(X)] = E
{
E[Y |T = 1, X]

∣∣ T = 1, π(X)
}

= E[µ1(X)|π(X)].

What this says is that for fixed π(X), the mean response under treatment
is unbiased for the conditional expectation of µ1(X). This equality holds for
any value of X, so the expectations of these two quantities are the same with
respect to the distribution of π(X):

Eπ(X) [E[Y |T = 1, π(X)]] = Eπ(X) [E[µ1(X)|π(X)]] = EX [µ1(X)].

This leads to the following estimator for EX [µ1(X)]: Compute the average
response for all treated patients for each value of the propensity, and integrate
with respect to the distribution of the propensity. In practice, we approximate
this by using a rough approximation to the distribution of π(X): Define strata
(or bins) of the propensity score, for example (0, 0.1], ..., (0.9, 1). Within
each stratum, find the average response among treated patients. Then combine
these values in a weighted average, weighting according to the frequency of each
stratum. This is our estimate of EX [µ1(X)]. We follow the same procedure in
the control arm to estimate EX [µ0(X)], and the difference is our estimate of
EX [τ(X)].

Inverse probability weighting

From Bayes’ theorem, f1(x) = f(x)π(x)/π1. Consider weighting this density
with weights proportional to 1/π(x). The density of this weighted distribution
is given by

f̃1(x) =

1
π(x)f(x)π(x)/π1∫
R

1
π(x)f(x)π(x)/π1

dx =
f(x)/π1∫

R f(x)/π1dx
=
f(x)/π1

1/π1
= f(x).

Hence the weighted conditional distribution of X given T = 1 is the same as the
marginal distribution of X. So the expectation of any function of X with respect
to this distribution is the same as with respect to the marginal distribution of
X. Specifically, using X̃ to denote the random variable following the weighted
density f̃1(x),

EX̃ [µ1(X̃)] = EX [µ1(X)].
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Based on this result, we use the sample mean of the response in the treat-
ment arm, with weights proportional to the inverse of the propensity, as an
unbiased estimator for EX [µ1(X)]. Similarly, in the control arm we use weights
proportional to 1/(1 − π(x)) to get an unbiased estimate for EX [µ0(x)]. The
difference between these two is our estimate for EX [τ(X)]
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