
Statistical Models for Image SequencesNeil Crellin, Trevor Hastie and Iain JohnstoneDepartment of StatisticsStanford UniversityStanford, CA 94305-4065, USADecember, 1998AbstractIdenti�cation of brain activity using functional magnetic resonance imaging(fMRI) depends on blood 
ow replenishing activated neuronal sites. In thispaper we describe how previous studies have sought to model the hemo-dynamic response function with restricted parametric models, and examinesome of the inadequacies imposed by the implicit restrictions. We investigatemore 
exible estimation of hemodynamic response using cubic spline basisexpansions, both of the time course itself and of the hemodynamic responsefunction. In the latter, a deconvolution estimate of hemodynamic response isestimated from the observed fMRI time series at each pixel location and thedesigned temporal input stimulus. The estimated hemodynamic responsesinclude both monophasic and biphasic forms, comparable with the morelimited model proposed in Friston et al. [1995b]. Bootstrapping allows usto show that for our data, a Poisson-based convolution model performs nobetter than �tting a sinusoid to the data, but that for regions of activation,both the spline-based convolution model and periodic spline models do. Astudy of primary visual cortex activation is used to illustrate these �ndings.1 IntroductionFunctional magnetic resonance imaging (fMRI) has made it possible to con-duct sophisticated human brain mapping neuroscience experiments. Suchexperiments commonly consist of human subjects being exposed to a de-signed temporal sequence of stimulus conditions while repeated MRI scans1



of the brain region of interest are taken. A common experimental design al-ternates equal length periods of stimulus and rest for a number of cycles. Themagnetic characteristics of hemoglobin in the blood are detectably changedby oxygenation. Recently activated sites of neural activity are replenishedwith oxygenated blood, allowing identi�cation of brain activity using MRIscans designed to detect such changes in magnetic susceptibility [Ogawaet al., 1992, Kwong et al., 1992]. While neural activation occurs on a mil-lisecond time-scale, the detectable blood 
ow replenishing the activationsites depends on local vasculature and can occur as long as several secondsafter activation.

Figure 1: An oblique anatomic MRI scan localized around the calcarine sul-cus. The 16 by 16 subregion indicated contains the area of primary visualcortex being stimulated. The four darker pixels in this region are selected todemonstrate some of the methods in this paper.The concept of the hemodynamic response function introduced by Fristonet al. [1994b] and their convolution model has been enthusiastically adoptedin the fMRI literature. A version of this model has the form:y(t) = (h � x)(t) + �(t) (1)where� y(t) is the observed signal at a particular time (t).� h � x = Rv>0 h(v)x(t � v)dv is a convolution of the neuronal responsex(t) with the hemodynamic response function h(v).2



� �(t) is the residual process.The idea is that rather than observing the neuronal activity x(t) directly,MRI allows us to see a blurred and delayed version via the measured bloodactivity (which responds to the neuronal activity); h(v) is the blurring func-tion.
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Figure 2: The time course from a single pixel is displayed. Superimposed isthe treatment pro�le, with the higher level indicating stimulus and the lowerrest.Friston et al. [1994b] propose use of a Poisson form for the hemody-namic response function (to be convolved, for example, with the temporaltreatment pro�le), with a single parameter � globally describing delay, dis-persion, and hemodynamic response function shape. Lange and Zeger [1997]and Boynton et al. [1996] use Gamma forms for the hemodynamic response.Lange and Zeger estimate parameters at each pixel location rather thanglobally, and use a frequency domain �tting procedure.Friston et al. [1995b,a] observe that evoked hemodynamic responses canbe biphasic or have di�erential `early' or `late' pro�les. They �t a modelconsisting of a linear combination of two monophasic parametric curves toexplore this behavior, for example. They set the parameters of their model'smonophasic curves to pre-chosen integers and do not estimate them usingthe data.An acknowledged de�ciency of the Poisson model for the hemodynamicresponse function is that it combines delay and dispersion into a single pa-3



rameter. Given the possible inadequacy of the Poisson and Gamma modelsin describing the true nature of vascular delay and acknowledging the pos-sibility of a biphasic response, we propose a more data-driven approach tothe estimation of the hemodynamic response. In particular, by using a more
exible modeling family, such as cubic B-splines, we are able to discover moreinformation regarding the local workings of the brain during activation suchas sensory stimulation or cognitive function.2 DataFigure 1 shows an anatomical MRI scan of the human brain. This is anoblique slice taken as part of an investigation into activation of the primaryvisual cortex, which is located along the calcarine sulcus. The area of ac-tivation for this particular experiment is expected to lie within the boxed16 by 16 pixel subregion along the sulcus. The stimulus-rest regime for thisseries of functional scans consists of stimulus for 15 scans then rest for 15scans repeated for 4 cycles, a total of 120 functional scans. An image wastaken every 1.5 seconds in a continuous spiral scan.Figure 2 shows an example of a time series produced at a single pixel,with the stimulus regime superimposed at the top of the �gure. Note thedelay between the change in treatment and the change in signal. Observealso the periodic nature of the response in an almost sinusoidal pattern.One common form of analysis of such data consists of thresholding a mapof the correlation coe�cient between the data at each pixel and the best�tting sinusoid at the stimulation frequency (with respect to amplitude andphase).Highlighted in the activation square in �gure 1 are four selected pixels,whose mean-corrected time courses are shown in Figure 3. Superimposedover the data are the �ts produced by the Lange-Zeger procedure using aPoisson model for the hemodynamics. Figure 4 shows the �ts produced atthese four pixels using periodic splines, and �gure 5 shows a single cycleof the periodic splines compared to the Lange-Zeger estimates at the corre-sponding pixels. Precise details of the periodic spline model are describedin the next section.A large number of the periodic spline �ts of the data exhibited the charac-teristic double-humped pattern seen in these �gures. Increasing the numberof knots did not dramatically alter the overall shape of the �ts, suggestingthis pattern is not an artifact of the �tting procedure.The structure apparently uncovered by these exploratory �ts suggested4
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Figure 3: Mean-corrected time-courses at the four pixel locations indicatedin �gure 1 (in order from left to right). Superimposed over the time-coursesare the parametric model �ts obtained using the Lange-Zeger procedure,and a poisson model for the hemodynamic response function.
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Figure 4: Mean-corrected time-courses at the four pixel locations indicatedin �gure 1 (in order from left to right). Superimposed over the time-coursesare the �ts obtained using periodic cubic splines.
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Figure 5: The monophasic kernel �ts of the Lange-Zeger procedure comparedto the periodic spline �ts over a single cycle at each of the 4 pixels displayedabove.
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that a more 
exible model might provide greater insights into the natureof the brain's response to activation. The double-humped pattern seemedto be suggestive of a biphasic hemodynamic response. This led us to alsoconsider cubic spline basis expansion models for the hemodynamic responsefunction.3 ModelsThe data we are considering consists of sequences or time series of imagedata. Let yi denote the ith image in the sequence, for i = 1; : : : ; n, where eachimage is viewed as a vector of M = m1 �m2 pixels, where m1 and m2 arethe image dimensions. If we consider the image data as an n�M matrix Y ,each row represents the pixels of an image in the sequence, and each columnrepresents the time-series of responses at individual pixel locations. Theexperimental subject is scanned while being exposed to alternating periodsof rest and (in our example above, visual) stimuli. Encoding whether animage is scanned during a period of rest or stimulation, we can create acovariate x(t), for which we have the discretized vector with xi = x(ti)equal to one if the ith scan occurs during the stimulus condition, or zeroduring rest.We now propose two di�erent 
exible approaches for modeling the series;the �rst is a spline model for the observed series itself, the second a splinemodel for the hemodynamic response function.3.1 Periodic Spline Model for Pixel Time SeriesSince the simplest commonality of the experimental regime is its periodic na-ture, we �rst explored the time-series using regression with periodic splines.Here we are modeling the observed data directly, with a model of the formY (t) = S(t) + �(t)where S(t) =PLl=1 �lbl(t). The spline �ts are based on equally spaced knotsover a single cycle, constrained to periodically wrap at the cycle boundarieswith continuous zero'th through second derivatives at the knots. The func-tions bl(t) for l = 1; : : : ; L are the cubic B-spline basis functions for L equallyspaced knots over a single stimulus-rest cycle, and the values of �l must besuch that the periodicity constraints are satis�ed.The times at which fMRI scans are taken, ti, are converted to new timest�i = ti mod T . We can then construct a basis for cubic-splines periodic on8



[0; T ] as follows. We have available a function to generate a basis of cubicB-splines bl(t) with L equally spaced knots in [0; T ], and their derivativesde Boor [1978]. Using their zero'th through third derivatives at 0 and T ,we can obtain a linear constraint matrix C such that C� = 0 enforces theperiodic boundary conditions on the parameters �. We now construct abasis matrix B using the periodic time points t�i . Using C, we can reduceB to B� by standard linear algebra [Golub and Van Loan, 1983], where B�has the constraints built in. We can then regress the pixel-wise series Yij atthe jth pixel on the columns of B� for j = 1; : : : ;M . Standard software suchas Matlab or Splus allow these least-squares calculations to be performedsimultaneously for all pixels. Examples are given in �gure 4.3.2 Hemodynamic Spline Model for response functionAlternatively, suppose the time-series Y (t) arises as the convolution of anunknown hemodynamic response function h(v) with the stimulus functionx(t) Y (t) = �+ (h � x)(t) + �(t) (2)Let h(k); k = 1; : : : ;K denote the discretized version of h(v) evaluated atthe uniform time points. Since we allow for distinct hemodynamic responsesat each pixel location, we may refer to the hemodynamic response at the jthpixel using hj(v) or its discretization hj(k). We can write the convolutionmodel as Yij = �j + KXk=1xi�k+1hj(k) + �ifor each pixel j and time index i. Negative subscripts are to be understoodas zero value quantities. (Cyclically lagging values modulo n may be anappropriate alternative in some circumstances.) This can be rewritten invector form as Yj = �j +Xhj + �j (3)where the n � K matrix X is constructed with �rst column given by thevector x described above, and lagged versions of x in subsequent columns.(If hj is periodic, cyclic lags may be quite appropriate, especially in thetypical case where initial scans are not considered while the magnetic reso-nance relaxation e�ects of tissue stabilize.) For physiological interpretation,we consider �j as a baseline (control) response level, and values of hj(k)to be non-negative, corresponding to how much blood is delayed by thatamount. We can now readily estimate hj using least-squares, subject to a9



non-negativity constraint. That is, at the jth pixel, we minimizeQj = jjYj � �j �Xhj jj2 (4)with respect to � and hj = hj(k); k = 1; : : : ;K subject to the constraintshj(k) � 0 for k = 1; : : : ;K.In this description so far, we have o�ered a similar formulation to theconvolution models proposed by Friston et al and Lange and Zeger and oth-ers. They model h using a Poisson or Gamma model, which could be �t inthis framework by iterative non-linear least squares techniques in the timedomain. Friston et al. [1995b] use a general linear model estimation proce-dure as described in Friston et al. [1994a, 1995c] and Worsley and Friston[1995]. As described above, their model assumes an uncorrelated error termas the sole source of error which is added to the response function beforeconvolution by the hemodynamic response. Lange and Zeger transform intoFourier space and perform what is e�ectively iteratively re-weighted non-linear least squares in the frequency domain. Friston et al. [1994b] assumethe same Poisson model across all pixels; Lange and Zeger allow for locallyvarying parameter values between pixels, and use Gamma models to allowfor more general local variability.Rather than presume a speci�c distributional form for h, we proposeinstead to estimate it semi-parametrically at each pixel location based onthe time course data. Speci�cally, we propose a basis expansion model ofthe form h(v) = PLl=1 �lbl(v) and the values of � are the parameters to beestimated. The studies referred to above use scaled probability distributionssuch as the Poisson and Gamma to estimate hemodynamic response. Giventhe physiological interpretation of h, we expect h(v) to be \smooth" andsuggest the use of cubic B-splines as basis functions to ensure smoothnesswithout requiring a speci�c monophasic form. Note that the cubic B-splinebasis functions bl(v) for l = 1; : : : ; L are themselves probability density func-tions. Modeling h(v) as PLl=1 �lbl(v), we are estimating the hemodynamicresponse as a non-negative linear combination of densities. The coe�cientsmay be negative so long as the estimate of h(v) is non-negative. The non-negativity constraint on h makes this a constrained but linear least-squaresproblem (note that the constraints are also linear). This is easily imple-mented using minimization software such as CFSQP Lawrence et al. [1994].We discretize the basis functions bl(v) for l = 1; : : : ; L at the uniform pointsat which h(v) was discretized into the columns of a matrix B (which is thusK � L). Criterion (4) becomesQj = jjYj � �j �XB�jjj2; (5)10



which we minimize with respect to �j and �j(l); l = 1; : : : ; L(L � K) subjectto the constraints PLl=1 �j(l)bl(k) � 0 for k = 1; : : : ;K.4 ExampleExamples of the periodic spline �ts to several pixels were provided previouslyin �gures 4 and 5. They appear to follow the observed data quite well anddetect structural patterns not observed in the comparable Lange-Zeger �ts.We now investigate whether the hemodynamic spline models show similar
exibility.We use a cubic B-spline basis with eight equally spaced knots on theinterval [0,22.5] seconds for the hemodynamic spline. Since a scan is takenevery 1.5 seconds this corresponds to the time taken for 15 scans (see �g-ure 2). Care needs to be taken in constructing the matrix X in (3). Sincethe test and stimulus phases last 15 scans each, the columns become linearlydependent if X has more than 15 columns. It follows that estimability ofh(v) beyond 22.5 seconds is not possible. Lange and Zeger cite Bandettiniet al. [1993] and Friston et al. [1994b] as estimating hemodynamic delaysin humans to be roughly between 4 to 10 seconds so this should not berestrictive. We have chosen K = 15 and L = 8 for this example. Figure 6shows examples of the estimates obtained at two example pixels. The twopixels selected are the upper two of the four displayed in �gures 3, 4, and 5.The estimated hemodynamic response function is shown on the left, and the�tted reconvolutions on the right. For each case the corresponding curvesbased on the best �tting Poisson model is displayed for comparison. Thereis little, if any, obvious improvement or di�erence in the reconvolution es-timates. Also, neither convolution models' estimates appear to capture thedouble-humped pattern seen in the periodic spline �ts.The general shape of the estimates of hemodynamic response for thesepixels are fairly close in gross features. In many cases the estimates ob-tained for the hemodynamic response closely follow the matching Poisson�t. Figure 7 below shows the corresponding estimates at two pixels selectedto have more obvious biphasic dissimilarity. Observe that the estimate ofthe hemodynamic response in each case is notably di�erent, apparently un-covering structure not observed in the Lange-Zeger and Friston models. Thereconvolutions, however, are still quite similar. The periodic spline �ts (notshown) in these cases are similar to both convolution models and are moresinusoidal, not exhibiting the double-humped pattern noted previously.11
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Figure 6: On the left are estimates of the hemodynamic response functionfor the left-most two selected pixels in �gure 1 (which are also the top twopanels in �gures 3,4,5). The solid curve is the periodic spline estimate, thedashed curve the Lange-Zeger poisson estimate. On the right appear theconvolutions of both, superimposed over the original time series.
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Figure 7: On the left are estimates of the hemodynamic response function fortwo pixels selected to di�er in their hemodynamic estimates. The solid curveis the periodic spline estimate, the dashed curve the Lange-Zeger poissonestimate. On the right appear the convolutions of both, superimposed overthe original time series.
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5 Inadequacies of convolution modelsTo more clearly display the di�erences between the two convolution modelsand the periodic spline �ts, �gure 8 below shows a single cycle of eachmodel. The �ts displayed are from the �rst example pixel in �gure 5, andthe �rst example pixel in �gure 7. The convolution models are convolvinga square wave with the hemodynamic response function. As the stimulusregime switches from rest to stimulus, the convolution accumulates a sumof the values of the hemodynamic response function. As it switches backfrom stimulus to rest, the accumulated terms are dropped in the order theywere added. This accounts for the mirror anti-symmetry at the half cyclepoint of the convolution model reconstructions. This is more clearly seen in�gure 9, which shows one cycle of the hemodynamic spline model from the�rst set of panels of �gure 7.
0 10 20 30

-1
0

-5
0

5
10

spline convolution model
Lange-Zeger model
periodic spline fit

0 10 20 30

-1
0

-5
0

5
10

Figure 8: A single cycle of each of the convolution models together with theperiodic spline �t. At left are the �ts from the �rst example pixel above. Atright are the �ts from the strongly biphasic pixel seen in Figure (7.The window smoothing nature of the convolution models for this stimu-lus regime also forces the estimates to be monotonically non-decreasing upto the half cycle and monotonically non-increasing in the second half cycle.By contrast, the periodic spline model is only constrained to be smooth andperiodic and admits di�erent rise and decay behaviors.Next we attempt to model the periodic spline �tted values from the �rstpanel of �gure 8 with a convolution model. Fitting a completely generalhemodynamic response function produces the deconvolution and reconvolu-tion estimates shown in �gure 10. Clearly the convolution model is unableto capture the types of patterns suggested by the spline �ts to the data.14
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Figure 9: A single cycle of the strikingly biphasic hemodynamic spline es-timates reconvolution. Observe both the half-cycle monotonicity and mirroranti-symmetry.
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Figure 10: On the left is the best deconvolution kernel estimate when at-tempting to �t the periodic spline �tted values using a convolution model.On the right are the curve being �tted and the convolution reconstruction.Note the convolution model is unable to adequately describe the shape of thespline �t. 15



6 Signal or Noise?Our investigations so far suggest that the convolution models may be un-fairly restrictive and fail to represent structure present in the data. It shouldbe stressed that thus far these are empirical results, and we need to betterunderstand the nature of variability of the the data. The observed timeseries can be quite noisy, and we need to be sure we are not just �ttingmodels to the noise. The example power spectrum in �gure 11 shows theperiodogram of the time series displayed in �gure 2. Most of the powerlies at the fundamental frequency. Implicit in the convolution model is theassumption that signal power at the o�-harmonic frequencies comes fromnoise. The spectral power at the harmonic frequencies is of comparablemagnitude to that seen at the o�-harmonic frequencies. This poses the fol-lowing questions: if all of the spectral power of the time series lies at thefundamental frequency, do any of these models perform signi�cantly betterthan �tting a single sinusoid at that frequency, and can we statistically testif the pattern observed in the periodic spline �ts is real?
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Figure 11: The power spectrum of the �rst example time series above. Super-imposed is a scaled periodogram of the stimulus regime square wave, whosepower lies at odd harmonics of the fundamental frequency.
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6.1 Periodic spline model versus sinusoidWe wish to test whether the bumps we have found in our periodic splinemodels result from over�tting the data. We do this via a bootstrap hypoth-esis test, which attempts to preserve the autocorrelation in the data. We usethe residuals from the �tted sinusoid at each pixel to form our resamplingdistribution.As a test statistic, we use the sum-of-squared deviations (SS) betweenthe periodic-spline �t and the sinusoid �t at each pixel. It can be shownthat the family of sinusoids is a linear sub-family of the periodic splines,and hence the �ts are nested. The bootstrap is used to estimate the nulldistribution of this statistic, assuming the sinusoid model is correct.Speci�cally at each pixel we �t a sinusoid model, compute the residuals,and then take each cycle of the residuals as our sampling units. In the ex-ample above, each pixel time-course thus yields four cycles of residuals. Were-sample in temporal blocks of cycles in an attempt to retain the temporalautocorrelation structure of the underlying data. Under the null model thatthe data are ideally modeled by a sinusoid at the fundamental frequency,these can reasonably be assumed to arise from the same distribution.At each pixel, B�1 bootstrap resamples are formed by taking the original�tted sinusoid for that pixel, and adding a separate resampled residual cycleto each of its four cycles to produce a bootstrap simulated time-course. Foreach of these B � 1 simulated time series, the sinusoid and periodic-splinemodels are �t, and the SS statistic is computed. To test at the � level, wecheck whether the observed SS value lies within the largest �B values of SS.Figure 12 shows the results for the 16 � 16 array of pixels in our exam-ple, and B = 500. Both the sinusoid and periodic-spline �t are shown ineach plot, along with the realized \P-value" from the bootstrap simulations,rounded to the nearest percent. We notice that not only are several of thebumpy periodic-splines in the active area signi�cantly di�erent from a sinu-soid, but also that there is a spatial pattern to this signi�cance which addsfurther support.6.2 Poisson convolution versus sinusoidComparing the poisson convolution model to the sinusoid requires somecare. These are not nested �ts, and so each can dominate under di�erentcircumstances. For this comparison we used a di�erent bootstrap procedure.Let �RSS = RSSS � RSSP denote, for a given time course, the change inresidual-sum-of-squares between the sinusoid �t and the poisson �t. We use17
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the bootstrap to obtain a 90% con�dence interval for �RSS at each pixel.We obtain a bootstrap sampling distribution by sampling blocks of resid-uals from the periodic spline �ts, which is a richer �t than either of the twounder consideration. These are pooled across all pixels, sampled with re-placement, and pasted back onto the spline �ts as before. For each of 300such realizations, �RSS is computed at each pixel.Figure 13 shows at which of the pixels the sinusoid or poisson dominates,and those for which the comparisons were inconclusive. These choices werebased on the pixelwise 90% con�dence intervals. For example, if the lower5% value of �RSS were positive, that would favor the poisson (this neveroccurred), while if the upper 5% value were negative, the sinusoid would befavored.We see that either the sinusoids dominate, or there is no signi�cantdi�erence. The sinusoids dominate in low-amplitude areas which are oflesser interest. In many of these cases the convolution models are e�ectively
at. The monotonicity constraint implicit in the convolution models meansthat sinusoids with a wide range of phase delays may �t the data well butcannot be modeled by the convolution model. This appears to explain manyof these cases.6.3 Hemodynamic spline versus sinusoidWe carried out an identical comparison between the sinusoid model and thehemodynamic spline convolution model. The results are shown in �gure 14.Here it appears that the hemodynamic spline dominates in the active ar-eas, while the sinusoid prevails as before in non-active areas where di�erentphases appear to be called for. However, the di�erences between the hemo-dynamic spline and sinusoids are much more modest than those realized bythe periodic spline model for the time courses.6.4 Further con�rmationsTo con�rm that these results are not speci�c to the example data used,similar analyses were performed on a reference data set. Peter Jezzardkindly provided us with access to a copy of the data analyzed in Friston et al.[1994b], which is also the example data set used and described in Lange andZeger [1997]. Our �ndings were essentially the same as here; periodic spline�ts were a signi�cant improvement over sinusoids in the areas of activation,and exhibited a biphasic feature much like we have seen here. Details aregiven in Crellin [1996]. 20
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7 DiscussionThis paper shows several important results about fMRI time course data.The �rst is that the convolution model imposes intrinsic structural con-straints which limits its ability to capture the patterns seen in the periodicspline �ts to the data. One possible modi�cation which could improve mat-ters would be to allow the hemodynamic response function to take negativevalues, at the cost of more di�cult physiological interpretation1. Modelsfor the hemodynamic response function in current use are almost uniformlypositive (Poisson, Gamma or Gaussian density functions), and as such willnot capture the patterns seen in the periodic spline �ts.Another important result is that �tting the Poisson-based convolutionmodel is shown to perform no better than �tting a sinusoid with arbitraryphase and amplitude at the activation frequency. However, �tting the spline-based convolution model does outperform the sinusoidal �ts, despite theinherent constraints of the convolution model. The periodic spline �ts tothe time course data can di�er substantially from the sinusoid �ts, and wehave given some evidence that these di�erences are real. They show biphasicbehavior, which persists when the number of knots are increased, and alsooccur in spatially connected patterns.ReferencesP.A. Bandettini, A. Jesmanowicz, E.C. Wong, and J.S. Hyde. Processingstrategies for time-course data sets in functional MRI of the human brain.Magnetic Resonance in Medicine, 30(2):390{397, 1993.G.M. Boynton, S.A. Engel, G.H. Glover, and D.J. Heeger. Linear systemsanalysis of fMRI in human v1. Journal of Neuroscience, 16:4207{4221,1996.N. Crellin. Modeling Image Sequences, with particular application to fMRIdata. PhD thesis, Statistics Department, Stanford University, 1996.C. de Boor. A Practical Guide to Splines. Applied Mathematical Sciences.Springer-Verlag, New York, 1978.1David Heeger, in personal communication, proposes the following possible mecha-nism: immediately following neural activation but before vascular replenishment, there isa higher level of deoxyhemoglobin at activation sites. This could be modeled by negativehemodynamic response values. This usually happens faster than images are rescannedhowever. 22
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