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Abstract

Identification of brain activity using functional magnetic resonance imaging
(fMRI) depends on blood flow replenishing activated neuronal sites. In this
paper we describe how previous studies have sought to model the hemo-
dynamic response function with restricted parametric models, and examine
some of the inadequacies imposed by the implicit restrictions. We investigate
more flexible estimation of hemodynamic response using cubic spline basis
expansions, both of the time course itself and of the hemodynamic response
function. In the latter, a deconvolution estimate of hemodynamic response is
estimated from the observed fMRI time series at each pixel location and the
designed temporal input stimulus. The estimated hemodynamic responses
include both monophasic and biphasic forms, comparable with the more
limited model proposed in Friston et al. [1995b]. Bootstrapping allows us
to show that for our data, a Poisson-based convolution model performs no
better than fitting a sinusoid to the data, but that for regions of activation,
both the spline-based convolution model and periodic spline models do. A
study of primary visual cortex activation is used to illustrate these findings.

1 Introduction

Functional magnetic resonance imaging (fMRI) has made it possible to con-
duct sophisticated human brain mapping neuroscience experiments. Such
experiments commonly consist of human subjects being exposed to a de-
signed temporal sequence of stimulus conditions while repeated MRI scans



of the brain region of interest are taken. A common experimental design al-
ternates equal length periods of stimulus and rest for a number of cycles. The
magnetic characteristics of hemoglobin in the blood are detectably changed
by oxygenation. Recently activated sites of neural activity are replenished
with oxygenated blood, allowing identification of brain activity using MRI
scans designed to detect such changes in magnetic susceptibility [Ogawa
et al., 1992, Kwong et al., 1992]. While neural activation occurs on a mil-
lisecond time-scale, the detectable blood flow replenishing the activation
sites depends on local vasculature and can occur as long as several seconds
after activation.

Figure 1: An oblique anatomic MRI scan localized around the calcarine sul-
cus. The 16 by 16 subregion indicated contains the area of primary visual
corter being stimulated. The four darker pixels in this region are selected to
demonstrate some of the methods in this paper.

The concept of the hemodynamic response function introduced by Friston
et al. [1994b] and their convolution model has been enthusiastically adopted
in the fMRI literature. A version of this model has the form:

y(t) = (hxz)(t) + €(t) (1)
where
e y(t) is the observed signal at a particular time ().

e hxx = [, h(v)z(t —v)dv is a convolution of the neuronal response
z(t) with the hemodynamic response function h(v).



e ¢(t) is the residual process.

The idea is that rather than observing the neuronal activity z(¢) directly,
MRI allows us to see a blurred and delayed version via the measured blood
activity (which responds to the neuronal activity); h(v) is the blurring func-
tiomn.
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Figure 2: The time course from a single pizel is displayed. Superimposed is
the treatment profile, with the higher level indicating stimulus and the lower
rest.

Friston et al. [1994b] propose use of a Poisson form for the hemody-
namic response function (to be convolved, for example, with the temporal
treatment profile), with a single parameter A\ globally describing delay, dis-
persion, and hemodynamic response function shape. Lange and Zeger [1997]
and Boynton et al. [1996] use Gamma forms for the hemodynamic response.
Lange and Zeger estimate parameters at each pixel location rather than
globally, and use a frequency domain fitting procedure.

Friston et al. [1995b,a] observe that evoked hemodynamic responses can
be biphasic or have differential ‘early’ or ‘late’ profiles. They fit a model
consisting of a linear combination of two monophasic parametric curves to
explore this behavior, for example. They set the parameters of their model’s
monophasic curves to pre-chosen integers and do not estimate them using
the data.

An acknowledged deficiency of the Poisson model for the hemodynamic
response function is that it combines delay and dispersion into a single pa-



rameter. Given the possible inadequacy of the Poisson and Gamma models
in describing the true nature of vascular delay and acknowledging the pos-
sibility of a biphasic response, we propose a more data-driven approach to
the estimation of the hemodynamic response. In particular, by using a more
flexible modeling family, such as cubic B-splines, we are able to discover more
information regarding the local workings of the brain during activation such
as sensory stimulation or cognitive function.

2 Data

Figure 1 shows an anatomical MRI scan of the human brain. This is an
oblique slice taken as part of an investigation into activation of the primary
visual cortex, which is located along the calcarine sulcus. The area of ac-
tivation for this particular experiment is expected to lie within the boxed
16 by 16 pixel subregion along the sulcus. The stimulus-rest regime for this
series of functional scans consists of stimulus for 15 scans then rest for 15
scans repeated for 4 cycles, a total of 120 functional scans. An image was
taken every 1.5 seconds in a continuous spiral scan.

Figure 2 shows an example of a time series produced at a single pixel,
with the stimulus regime superimposed at the top of the figure. Note the
delay between the change in treatment and the change in signal. Observe
also the periodic nature of the response in an almost sinusoidal pattern.
One common form of analysis of such data consists of thresholding a map
of the correlation coeflicient between the data at each pixel and the best
fitting sinusoid at the stimulation frequency (with respect to amplitude and
phase).

Highlighted in the activation square in figure 1 are four selected pixels,
whose mean-corrected time courses are shown in Figure 3. Superimposed
over the data are the fits produced by the Lange-Zeger procedure using a
Poisson model for the hemodynamics. Figure 4 shows the fits produced at
these four pixels using periodic splines, and figure 5 shows a single cycle
of the periodic splines compared to the Lange-Zeger estimates at the corre-
sponding pixels. Precise details of the periodic spline model are described
in the next section.

A large number of the periodic spline fits of the data exhibited the charac-
teristic double-humped pattern seen in these figures. Increasing the number
of knots did not dramatically alter the overall shape of the fits, suggesting
this pattern is not an artifact of the fitting procedure.

The structure apparently uncovered by these exploratory fits suggested
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Figure 3: Mean-corrected time-courses at the four pixel locations indicated
in figure 1 (in order from left to right). Superimposed over the time-courses
are the parametric model fits obtained using the Lange-Zeger procedure,
and a poisson model for the hemodynamic response function.
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Figure 4: Mean-corrected time-courses at the four pizel locations indicated
in figure 1 (in order from left to right). Superimposed over the time-courses
are the fits obtained using periodic cubic splines.
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Figure 5: The monophasic kernel fits of the Lange-Zeger procedure compared
to the periodic spline fits over a single cycle at each of the 4 pizels displayed
above.



that a more flexible model might provide greater insights into the nature
of the brain’s response to activation. The double-humped pattern seemed
to be suggestive of a biphasic hemodynamic response. This led us to also
consider cubic spline basis expansion models for the hemodynamic response
function.

3 Models

The data we are considering consists of sequences or time series of image
data. Let y; denote the 7*" image in the sequence, fori = 1,...,n, where each
image is viewed as a vector of M = my x my pixels, where m; and mo are
the image dimensions. If we consider the image data as an n X M matrix Y,
each row represents the pixels of an image in the sequence, and each column
represents the time-series of responses at individual pixel locations. The
experimental subject is scanned while being exposed to alternating periods
of rest and (in our example above, visual) stimuli. Encoding whether an
image is scanned during a period of rest or stimulation, we can create a
covariate z(t), for which we have the discretized vector with z; = z(t;)
equal to one if the i scan occurs during the stimulus condition, or zero
during rest.

We now propose two different flexible approaches for modeling the series;
the first is a spline model for the observed series itself, the second a spline
model for the hemodynamic response function.

3.1 Periodic Spline Model for Pixel Time Series

Since the simplest commonality of the experimental regime is its periodic na-
ture, we first explored the time-series using regression with periodic splines.
Here we are modeling the observed data directly, with a model of the form

Y(t) = S(t) + e(t)

where S(t) = S_F, 6;b;(t). The spline fits are based on equally spaced knots
over a single cycle, constrained to periodically wrap at the cycle boundaries
with continuous zero’th through second derivatives at the knots. The func-
tions by(t) for I = 1,..., L are the cubic B-spline basis functions for L equally
spaced knots over a single stimulus-rest cycle, and the values of §; must be
such that the periodicity constraints are satisfied.

The times at which fMRI scans are taken, ¢;, are converted to new times
t7 =t; mod T. We can then construct a basis for cubic-splines periodic on



[0,T as follows. We have available a function to generate a basis of cubic
B-splines b;(t) with L equally spaced knots in [0,7'], and their derivatives
de Boor [1978]. Using their zero’th through third derivatives at 0 and T,
we can obtain a linear constraint matrix C such that C0 = 0 enforces the
periodic boundary conditions on the parameters §. We now construct a
basis matrix B using the periodic time points ¢;. Using C, we can reduce
B to B* by standard linear algebra [Golub and Van Loan, 1983], where B*
has the constraints built in. We can then regress the pixel-wise series Y;; at
the 5 pixel on the columns of B* for j = 1,..., M. Standard software such
as Matlab or Splus allow these least-squares calculations to be performed
simultaneously for all pixels. Examples are given in figure 4.

3.2 Hemodynamic Spline Model for response function

Alternatively, suppose the time-series Y (¢) arises as the convolution of an
unknown hemodynamic response function h(v) with the stimulus function
a(t)

Y(t) = p+ (hxx)(t) + €(t) (2)

Let h(k), kK =1,..., K denote the discretized version of h(v) evaluated at
the uniform time points. Since we allow for distinct hemodynamic responses
at each pixel location, we may refer to the hemodynamic response at the 5
pixel using hj(v) or its discretization h;(k). We can write the convolution

model as
K

Yij = pj+ Y wikprhy(k) + e
k=1
for each pixel 5 and time index . Negative subscripts are to be understood
as zero value quantities. (Cyclically lagging values modulo n may be an
appropriate alternative in some circumstances.) This can be rewritten in
vector form as

Yj=pj+Xhj+e 3)

where the n x K matrix X is constructed with first column given by the
vector = described above, and lagged versions of = in subsequent columuns.
(If hj is periodic, cyclic lags may be quite appropriate, especially in the
typical case where initial scans are not considered while the magnetic reso-
nance relaxation effects of tissue stabilize.) For physiological interpretation,
we consider p; as a baseline (control) response level, and values of h;(k)
to be non-negative, corresponding to how much blood is delayed by that
amount. We can now readily estimate h; using least-squares, subject to a



non-negativity constraint. That is, at the j% pixel, we minimize
2
Qj = I1Yj — pj — Xhyl| (4)

with respect to p and h; = hj(k), k = 1,..., K subject to the constraints
hj(k) >0for k=1,..., K.

In this description so far, we have offered a similar formulation to the
convolution models proposed by Friston et al and Lange and Zeger and oth-
ers. They model h using a Poisson or Gamma model, which could be fit in
this framework by iterative non-linear least squares techniques in the time
domain. Friston et al. [1995b] use a general linear model estimation proce-
dure as described in Friston et al. [1994a, 1995¢c] and Worsley and Friston
[1995]. As described above, their model assumes an uncorrelated error term
as the sole source of error which is added to the response function before
convolution by the hemodynamic response. Lange and Zeger transform into
Fourier space and perform what is effectively iteratively re-weighted non-
linear least squares in the frequency domain. Friston et al. [1994b] assume
the same Poisson model across all pixels; Lange and Zeger allow for locally
varying parameter values between pixels, and use Gamma models to allow
for more general local variability.

Rather than presume a specific distributional form for h, we propose
instead to estimate it semi-parametrically at each pixel location based on
the time course data. Specifically, we propose a basis expansion model of
the form h(v) = Y/, ;b;(v) and the values of @ are the parameters to be
estimated. The studies referred to above use scaled probability distributions
such as the Poisson and Gamma to estimate hemodynamic response. Given
the physiological interpretation of h, we expect h(v) to be “smooth” and
suggest the use of cubic B-splines as basis functions to ensure smoothness
without requiring a specific monophasic form. Note that the cubic B-spline
basis functions b;(v) for [ = 1,..., L are themselves probability density func-
tions. Modeling h(v) as %, ;b/(v), we are estimating the hemodynamic
respounse as a non-negative linear combination of densities. The coefficients
may be negative so long as the estimate of h(v) is non-negative. The non-
negativity constraint on h makes this a constrained but linear least-squares
problem (note that the constraints are also linear). This is easily imple-
mented using minimization software such as CESQP Lawrence et al. [1994].
We discretize the basis functions b;(v) for [ = 1,..., L at the uniform points
at which h(v) was discretized into the columns of a matrix B (which is thus
K x L). Criterion (4) becomes

Q; = ||Y; — nj — X BY;|?, (5)
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which we minimize with respect to p; and 0;(1),l =1,..., L(L < K) subject
to the constraints >, 0,;(1)by(k) >0 for k=1,..., K.

4 Example

Examples of the periodic spline fits to several pixels were provided previously
in figures 4 and 5. They appear to follow the observed data quite well and
detect structural patterns not observed in the comparable Lange-Zeger fits.
We now investigate whether the hemodynamic spline models show similar
flexibility.

We use a cubic B-spline basis with eight equally spaced knots on the
interval [0,22.5] seconds for the hemodynamic spline. Since a scan is taken
every 1.5 seconds this corresponds to the time taken for 15 scans (see fig-
ure 2). Care needs to be taken in constructing the matrix X in (3). Since
the test and stimulus phases last 15 scans each, the columns become linearly
dependent if X has more than 15 columns. It follows that estimability of
h(v) beyond 22.5 seconds is not possible. Lange and Zeger cite Bandettini
et al. [1993] and Friston et al. [1994b] as estimating hemodynamic delays
in humans to be roughly between 4 to 10 seconds so this should not be
restrictive. We have chosen K = 15 and L = 8 for this example. Figure 6
shows examples of the estimates obtained at two example pixels. The two
pixels selected are the upper two of the four displayed in figures 3, 4, and 5.
The estimated hemodynamic response function is shown on the left, and the
fitted reconvolutions on the right. For each case the corresponding curves
based on the best fitting Poisson model is displayed for comparison. There
is little, if any, obvious improvement or difference in the reconvolution es-
timates. Also, neither convolution models’ estimates appear to capture the
double-humped pattern seen in the periodic spline fits.

The general shape of the estimates of hemodynamic response for these
pixels are fairly close in gross features. In many cases the estimates ob-
tained for the hemodynamic response closely follow the matching Poisson
fit. Figure 7 below shows the corresponding estimates at two pixels selected
to have more obvious biphasic dissimilarity. Observe that the estimate of
the hemodynamic response in each case is notably different, apparently un-
covering structure not observed in the Lange-Zeger and Friston models. The
reconvolutions, however, are still quite similar. The periodic spline fits (not
shown) in these cases are similar to both convolution models and are more
sinusoidal, not exhibiting the double-humped pattern noted previously.
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Figure 6: On the left are estimates of the hemodynamic response function
for the left-most two selected pizels in figure 1 (which are also the top two
panels in figures 3,4,5). The solid curve is the periodic spline estimate, the
dashed curve the Lange-Zeger poisson estimate. On the right appear the
convolutions of both, superimposed over the original time series.
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Figure 7: On the left are estimates of the hemodynamic response function for
two pizels selected to differ in their hemodynamic estimates. The solid curve
s the periodic spline estimate, the dashed curve the Lange-Zeger poisson
estimate. On the right appear the convolutions of both, superimposed over
the original time series.
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5 Inadequacies of convolution models

To more clearly display the differences between the two convolution models
and the periodic spline fits, figure 8 below shows a single cycle of each
model. The fits displayed are from the first example pixel in figure 5, and
the first example pixel in figure 7. The convolution models are convolving
a square wave with the hemodynamic response function. As the stimulus
regime switches from rest to stimulus, the convolution accumulates a sum
of the values of the hemodynamic response function. As it switches back
from stimulus to rest, the accumulated terms are dropped in the order they
were added. This accounts for the mirror anti-symmetry at the half cycle
point of the convolution model reconstructions. This is more clearly seen in
figure 9, which shows one cycle of the hemodynamic spline model from the
first set of panels of figure 7.
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Figure 8: A single cycle of each of the convolution models together with the
periodic spline fit. At left are the fits from the first example pixzel above. At
right are the fits from the strongly biphasic pizel seen in Figure (7.

The window smoothing nature of the convolution models for this stimu-
lus regime also forces the estimates to be monotonically non-decreasing up
to the half cycle and monotonically non-increasing in the second half cycle.
By contrast, the periodic spline model is only constrained to be smooth and
periodic and admits different rise and decay behaviors.

Next we attempt to model the periodic spline fitted values from the first
panel of figure 8 with a convolution model. Fitting a completely general
hemodynamic response function produces the deconvolution and reconvolu-
tion estimates shown in figure 10. Clearly the convolution model is unable
to capture the types of patterns suggested by the spline fits to the data.
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Figure 9: A single cycle of the strikingly biphasic hemodynamic spline es-
timates reconvolution. QObserve both the half-cycle monotonicity and mirror
anti-symmetry.

1.0

0.8

0.6

0.4

0.2

0.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 10 20 30

Figure 10: On the left is the best deconvolution kernel estimate when at-
tempting to fit the periodic spline fitted values using a convolution model.
On the right are the curve being fitted and the convolution reconstruction.
Note the convolution model is unable to adequately describe the shape of the
spline fit.
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6 Signal or Noise?

Our investigations so far suggest that the convolution models may be un-
fairly restrictive and fail to represent structure present in the data. It should
be stressed that thus far these are empirical results, and we need to better
understand the nature of variability of the the data. The observed time
series can be quite noisy, and we need to be sure we are not just fitting
models to the noise. The example power spectrum in figure 11 shows the
periodogram of the time series displayed in figure 2. Most of the power
lies at the fundamental frequency. Implicit in the convolution model is the
assumption that signal power at the off-harmonic frequencies comes from
noise. The spectral power at the harmonic frequencies is of comparable
magnitude to that seen at the off-harmonic frequencies. This poses the fol-
lowing questions: if all of the spectral power of the time series lies at the
fundamental frequency, do any of these models perform significantly better
than fitting a single sinusoid at that frequency, and can we statistically test
if the pattern observed in the periodic spline fits is real?

Pixel 3641 spectrum and square wave’s

600

400
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Figure 11: The power spectrum of the first example time series above. Super-
imposed is a scaled periodogram of the stimulus regime square wave, whose
power lies at odd harmonics of the fundamental frequency.
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6.1 Periodic spline model versus sinusoid

We wish to test whether the bumps we have found in our periodic spline
models result from overfitting the data. We do this via a bootstrap hypoth-
esis test, which attempts to preserve the autocorrelation in the data. We use
the residuals from the fitted sinusoid at each pixel to form our resampling
distribution.

As a test statistic, we use the sum-of-squared deviations (SS) between
the periodic-spline fit and the sinusoid fit at each pixel. It can be shown
that the family of sinusoids is a linear sub-family of the periodic splines,
and hence the fits are nested. The bootstrap is used to estimate the null
distribution of this statistic, assuming the sinusoid model is correct.

Specifically at each pixel we fit a sinusoid model, compute the residuals,
and then take each cycle of the residuals as our sampling units. In the ex-
ample above, each pixel time-course thus yields four cycles of residuals. We
re-sample in temporal blocks of cycles in an attempt to retain the temporal
autocorrelation structure of the underlying data. Under the null model that
the data are ideally modeled by a sinusoid at the fundamental frequency,
these can reasonably be assumed to arise from the same distribution.

At each pixel, B—1 bootstrap resamples are formed by taking the original
fitted sinusoid for that pixel, and adding a separate resampled residual cycle
to each of its four cycles to produce a bootstrap simulated time-course. For
each of these B — 1 simulated time series, the sinusoid and periodic-spline
models are fit, and the SS statistic is computed. To test at the « level, we
check whether the observed SS value lies within the largest aB values of SS.

Figure 12 shows the results for the 16 x 16 array of pixels in our exam-
ple, and B = 500. Both the sinusoid and periodic-spline fit are shown in
each plot, along with the realized “P-value” from the bootstrap simulations,
rounded to the nearest percent. We notice that not only are several of the
bumpy periodic-splines in the active area significantly different from a sinu-
soid, but also that there is a spatial pattern to this significance which adds
further support.

6.2 Poisson convolution versus sinusoid

Comparing the poisson convolution model to the sinusoid requires some
care. These are not nested fits, and so each can dominate under different
circumstances. For this comparison we used a different bootstrap procedure.
Let ARSS = RSSg — RSSp denote, for a given time course, the change in
residual-sum-of-squares between the sinusoid fit and the poisson fit. We use

17
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Figure 12: Observed P-value (rounded to nearest percent) obtained in boot-
strap stmulation comparing periodic spline fits to sinusoid. Each sub-panel
corresponds to a pizel, and includes the sinusoid and periodic spline fit for
one cycle.
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Figure 13: Bootstrap simulation comparing the poisson convolution model
to sinusoid fits. In the areas marked “S”, the sinusoid model dominates the
poisson model. Elsewhere they are not-significantly different.
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the bootstrap to obtain a 90% confidence interval for ARSS at each pixel.

We obtain a bootstrap sampling distribution by sampling blocks of resid-
uals from the periodic spline fits, which is a richer fit than either of the two
under consideration. These are pooled across all pixels, sampled with re-
placement, and pasted back onto the spline fits as before. For each of 300
such realizations, ARSS is computed at each pixel.

Figure 13 shows at which of the pixels the sinusoid or poisson dominates,
and those for which the comparisons were inconclusive. These choices were
based on the pixelwise 90% confidence intervals. For example, if the lower
5% value of ARSS were positive, that would favor the poisson (this never
occurred), while if the upper 5% value were negative, the sinusoid would be
favored.

We see that either the sinusoids dominate, or there is no significant
difference. The sinusoids dominate in low-amplitude areas which are of
lesser interest. In many of these cases the convolution models are effectively
flat. The monotonicity constraint implicit in the convolution models means
that sinusoids with a wide range of phase delays may fit the data well but
cannot be modeled by the convolution model. This appears to explain many
of these cases.

6.3 Hemodynamic spline versus sinusoid

We carried out an identical comparison between the sinusoid model and the
hemodynamic spline convolution model. The results are shown in figure 14.
Here it appears that the hemodynamic spline dominates in the active ar-
eas, while the sinusoid prevails as before in non-active areas where different
phases appear to be called for. However, the differences between the hemo-
dynamic spline and sinusoids are much more modest than those realized by
the periodic spline model for the time courses.

6.4 Further confirmations

To confirm that these results are not specific to the example data used,
similar analyses were performed on a reference data set. Peter Jezzard
kindly provided us with access to a copy of the data analyzed in Friston et al.
[1994b], which is also the example data set used and described in Lange and
Zeger [1997]. Our findings were essentially the same as here; periodic spline
fits were a significant improvement over sinusoids in the areas of activation,
and exhibited a biphasic feature much like we have seen here. Details are
given in Crellin [1996].
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Figure 14: Bootstrap simulation comparing the hemodynamic spline convo-
lution model to sinusoid fits. In the areas marked “S”, the sinusoid model
dominates, while in the areas marked “H”, the hemodynamic spline model
dominates. Elsewhere they are not-significantly different.
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7 Discussion

This paper shows several important results about fMRI time course data.
The first is that the convolution model imposes intrinsic structural con-
straints which limits its ability to capture the patterns seen in the periodic
spline fits to the data. One possible modification which could improve mat-
ters would be to allow the hemodynamic response function to take negative
values, at the cost of more difficult physiological interpretation!. Models
for the hemodynamic response function in current use are almost uniformly
positive (Poisson, Gamma or Gaussian density functions), and as such will
not capture the patterns seen in the periodic spline fits.

Another important result is that fitting the Poisson-based convolution
model is shown to perform no better than fitting a sinusoid with arbitrary
phase and amplitude at the activation frequency. However, fitting the spline-
based convolution model does outperform the sinusoidal fits, despite the
inherent constraints of the convolution model. The periodic spline fits to
the time course data can differ substantially from the sinusoid fits, and we
have given some evidence that these differences are real. They show biphasic
behavior, which persists when the number of knots are increased, and also
occur in spatially connected patterns.
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