
LARGE-SCALE STATISTICAL LEARNING

METHODS AND ALGORITHMS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF STATISTICS

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Junyang Qian

May 2020



Preface

The past two decades have witnessed rapid growth in the amount of data available to us. Many

areas such as genomics, neuroscience, economics and Internet services are producing big datasets

that have high dimension, large sample size, or both. This provides unprecedented opportunities for

us to retrieve and infer valuable information from the data. Meanwhile, it also poses new challenges

for statistical methodologies and computational algorithms.

Over the years, there has been prosperous development on both sides. In high-dimensional

regression problems, it is often believed that among all the predictors, only a subset of them are

relevant to the prediction, also known as the “bet on sparsity” principle. It is both of scientific

interests and for practical performance to identify such a subset from the data and establish a sparse

model. The lasso is a widely used and effective method of simultaneous estimation and variable

selection for linear models and has been studied to have nice theoretical properties under certain

conditions. Random forest, boosting and multivariate adaptive regression splines are representative

nonparametric methods for nonlinear modeling. In the meantime, a variety of efficient algorithms,

implementations and computational tools have been developed to accommodate the need for fast

computation. For practical applications, on the one hand, we want to formulate a reasonable model

to capture the desired structures and improve the quality of statistical estimation and inference. On

the other hand, in the face of increasingly large datasets, computation can be a big hurdle for one to

arrive at meaningful conclusions. This thesis stands at the intersection of the two topics, proposing

statistical methods to capture desired structures in the data, and seeking scalable approaches to

optimizing the computation for very large datasets.

Among the others, genomic data often present the nature of ultrahigh dimensionality. Re-

searchers used to deal with wide data in such studies, where the number of variables was large but
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the sample size was fairly limited. One can still conduct somewhat sophisticated statistical anal-

yses in memory and within a reasonable amount of time. However, recent studies have collected

genetic and disease information from very large cohorts. For example, the UK Biobank genotypes

and phenotypes dataset contains about 500,000 individuals and more than 800,000 genotyped SNP

measurements per person, the size of which may well exceed the physical memory we have. The

computational challenges for very large datasets are thus two fold. For implementation, we need to

deal with the fact that we may not hold the entire data in memory, which is often an assumption

made by most statistical packages, including the highly efficient lasso package glmnet. For the

design of algorithms, we need to take into consideration not only the complexity of basic operations

but also the cost associated with disk I/O – data transfer between the memory and the disk —

a very expensive operation that is several magnitudes slower than in-memory operations. To this

end, in Chapter 1, we design a scalable iterative algorithm called BASIL that solves the lasso and

elastic-net efficiently on large-scale and ultrahigh-dimensional data. The implementation for SNP

data in PLINK2 format is packaged in an R package snpnet. We demonstrate the method on the

UK Biobank and see strong performance gain over the other methods.

In some applications, we are interested in predicting more than one response with the same set

of predictors and the responses are correlated in some way, and we want to leverage such structure

to further improve the statistical efficiency and predictive performance. This falls into the topic of

multivariate statistics, and also known as multitask learning. In particular, one typical correlation

structure we want to model is low-rank structure for the linear model. We assume that the true

responses are not only linear in the predictors but also the linear coefficient matrix is low-rank.

In other words, the dependency of the responses on the predictors is through a layer of shared

components constructed linearly from the predictors. For high dimensional problems, it is also

important to assume sparse effect since again, it is unlikely that all the predictors are relevant to

the prediction. One regression method with these two joint structures is known as Sparse Reduced

Rank Regression. In Chapter 2, we investigated into this regression method, extending it to dealing

with missing values, confounding covariates, and design a scalable algorithm based on a screening

mechanism. This method is implemented in an R package multiSnpnet. We demonstrate the

method on the UK Biobank and see improved performance over other methods including the lasso.

In Chapter 3, we switch gears and study a different class of problems — estimating the hetero-

geneous treatment effect. This type of problems often arises when we are faced with several options
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and would like to determine the optimal one. For example, a doctor may have two treatments and

want to decide on one depending on the patient’s characteristics and symptoms. An e-commerce

company may have several ads to choose from for a placeholder and want to determine one that will

bring it the most profit based on the user group. This falls into the topic of causal inference, and in

particular the estimation of heterogeneous treatment effect. The main challenge of such problems

is that in the historical data, we never observe the other side of the coin, so we have no access to

the ground truth of the true difference between these options at all. There can also be redundant

predictors that we don’t know beforehand. We exploit two classic nonparametric methods gradient

boosting and multivariate adaptive regression splines, and adapt them to the context of causal

inference to estimate the treatment effect based on the predictors available. The two methods show

fairly competitive performance compared with other methods. The implementation is packaged in

an R package causalLearning.
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Chapter 1

Fast Sparse Regression for

Large-scale and

Ultrahigh-dimensional Problems

1.1 Introduction

The past two decades have witnessed rapid growth in the amount of data available to us. Many

areas such as genomics, neuroscience, economics and Internet services are producing big datasets

that have high dimension, large sample size, or both. A variety of statistical methods and computing

tools have been developed to accommodate this change. See, for example, Friedman et al. [2009],

Efron and Hastie [2016], Dean and Ghemawat [2008], Zaharia et al. [2010], Abadi et al. [2016] and

the references therein for more details.

In high-dimensional regression problems, we have a large number of predictors, and it is likely

that only a subset of them have a relationship with the response and will be useful for prediction.

Identifying such a subset is desirable for both scienti�c interests and the ability to predict outcomes

in the future. The lasso [Tibshirani, 1996] is a widely used and e�ective method for simultaneous

estimation and variable selection. Given a continuous responsey 2 Rn and a model matrix X 2

1
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Rn � p, it solves the following regularized regression problem.

�̂ (� ) = argmin � 2 Rp
1

2n
ky � X� k2

2 + � k� k1; (1.1)

where kxkq = (
P n

i =1 jx i jq)1=q is the vector `q norm of x 2 Rn and � � 0 is the tuning parameter.

The `1 penalty on � allows for selection as well as estimation. Normally there is an unpenalized

intercept in the model, but for ease of presentation we leave it out, or we may assume that bothX

and y have been centered with mean 0. One typically solves the entire lasso solution path over a grid

of � values� 1 � � 2 � � � � � L and chooses the best� by cross-validation or by predictive performance

on an independent validation set. In R [R Core Team, 2017], several packages, such asglmnet

[Friedman et al., 2010b] andncvreg [Breheny and Huang, 2011], provide e�cient procedures to

obtain the solution path for the Gaussian model (1.1), and for other generalized linear models with

the residual sum of squared replaced by the negative log-likelihood of the corresponding model.

Among them, glmnet , equipped with highly optimized Fortransubroutines, is widely considered the

fastest o�-the-shelf lasso solver. It can, for example, �t a sequence of 100 logistic regression models

on a sparse dataset with 54 million samples and 7 million predictors within only 2 hours [Hastie,

2015].

However, as the data become increasingly large, many existing methods and tools may not be

able to serve the need, especially if the size exceeds the memory size. Most packages, including

the ones mentioned above, assume that the data or at least its sparse representation can be fully

loaded in memory and that the remaining memory is su�cient to hold other intermediate results.

This becomes a real bottleneck for big datasets. For example, in our motivating application, the

UK Biobank genotypes and phenotypes dataset [Bycroft et al., 2018] contains about 500,000 indi-

viduals and more than 800,000 genotyped single nucleotide polymorphisms (SNPs) measurements

per person. This provides unprecedented opportunities to explore more comprehensive genotypic

relationships with phenotypes of interest. For polygenic traits such as height and body mass index

(BMI), speci�c variants discovered by genome-wide association studies (GWAS) used to explain

only a small proportion of the estimated heritability [Visscher et al., 2017], an upper bound of the

proportion of phenotypic variance explained by the genetic components. While GWAS with larger

sample size on the UK Biobank can be used to detect more SNPs and rare variants, their prediction

performance is fairly limited by univariate models. It is very interesting to see if full-scale multiple
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regression methods such as the lasso or elastic-net can improve the prediction performance and

simultaneously select relevant variants for the phenotypes. That being said, the computational

challenges are two fold. First is the memory bound. Even though each bi-allelic SNP value can

be represented by only two bits and thePLINK library [Chang et al., 2015] stores such SNP

datasets in a binary compressed format, statistical packages such asglmnet and ncvreg require

that the data be loaded in memory in a normal double-precision format. Given its sample size and

dimension, the genotype matrix itself will take up around one terabyte of space, which may well

exceed the size of the memory available and is infeasible for the packages. Second is the e�ciency

bound. For a larger-than-RAM dataset, it has to sit on the disk and we may only read part of it

into the memory. In such scenario, the overall e�ciency of the algorithm is not only determined

by the number of basic arithmetic operations but also the disk I/O | data transfer between the

memory and the disk | an operation several magnitudes slower than in-memory operations.

In this paper, we propose an e�cient and scalable meta algorithm for the lasso called Batch

Screening Iterative Lasso (BASIL) that is applicable to larger-than-RAM datasets and designed

to tackle the memory and e�ciency bound. It computes the entire lasso path and can easily

build on any existing package to make it a scalable solution. As the name suggests, it is done in

an iterative fashion on an adaptively screened subset of variables. At each iteration, we exploit an

e�cient, parallelizable screening operation to signi�cantly reduce the problem to one of manageable

size, solve the resulting smaller lasso problem, and then reconstruct and validate a full solution

through another e�cient, parallelizable step. In other words, the iterations have a screen-solve-

check substructure. That being said, it is the goal and also the guarantee of the BASIL algorithm

that the �nal solution exactly solves the full lasso problem (1.1) rather than any approximation,

even if the intermediate steps work repeatedly on subsets of variables.

The screen-solve-check substructure is inspired by Tibshirani et al. [2012] and especially the

proposed strong rules. The strong rules state: assumê� (� k � 1) is the lasso solution in (1.1) at � k � 1,

then the j th predictor is discarded at � k if

jx>
j (y � X �̂ (� k � 1)) j < � k � (� k � 1 � � k ): (1.2)

The key idea is that the inner product above is almost \non-expansive" in � and that the lasso

solution is characterized equivalently by the Karush-Kuhn-Tucker (KKT) condition [Boyd and
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Vandenberghe, 2004]. For the lasso, the KKT condition states that�̂ 2 Rp is a solution to (1.1) if

for all 1 � j � p,

1
n

� x>
j (y � X �̂ )

8
><

>:

= � � sign(�̂ j ); if �̂ j 6= 0 ;

� �; if �̂ j = 0 :
(1.3)

The KKT condition suggests that the variables discarded based on the strong rules would have

coe�cient 0 at the next � k . The checking step comes into play because this is not a guarantee. The

strong rules can fail, though failures occur rarely whenp > n . In any case, the KKT condition will

be checked to see if the coe�cients of the left-out variables are indeed 0 at� k . If the check fails,

we add in the violated variables and repeat the process. Otherwise, we successfully reconstruct a

full solution and move to the next � . This is the iterative algorithm proposed by these authors and

has been implemented e�cienly into the glmnet package.

The BASIL algorithm proceeds in a similar way but is designed to optimize for datasets that

are too big to �t into the memory. Considering the fact that screening and KKT check need to scan

through the entire data and are thus costly in the disk Input/Output (I/O) operations, we attempt

to do batch screening and solvea series of models (at di�erent � values) in each iteration, where a

single sweep over the full data would su�ce. Followed by a checking step, we can obtain the lasso

solution for multiple � 's in one iteration. This can e�ectively reduce the total number of iterations

needed to compute the full solution path and thus reduce the expensive disk read operations that

often cause signi�cant delay in the computation. The process is illustrated in Figure 1.1 and will

be detailed in the next section.

1.2 Results

Overview of the BASIL algorithm For convenience, we �rst introduce some notation. Let


 = f 1; 2; : : : ; pg be the universe of variable indices. For 1� ` � L , let �̂ (� ` ) be the lasso solution

at � = � ` , and A(� ` ) = f 1 � j � p : �̂ j (� ` ) 6= 0g be the active set. WhenX is a matrix, we useX S

to represent the submatrix including only columns indexed byS. Similarly when � is a vector, � S

represents the subvector including only elements indexed byS. Given any two vectors a; b 2 Rn ,

the dot product or inner product can be written as a> b = ha; bi =
P n

i =1 ai bi . Throughout the

paper, we use predictors, features, variables and variants interchangeably. We use the strong set to

refer to the screened subset of variables on which the lasso �t is computed at each iteration, and
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Figure 1.1: The lasso coe�cient pro�le that shows the progression of the BASIL algorithm. The previously
�nished part of the path is colored grey, the newly completed and veri�ed is in green, and the part that is
newly computed but failed the veri�cation is colored red.

the active set to refer to the subset of variables with nonzero lasso coe�cients.

Remember that our goal is to compute the exact lasso solution (1.1) for larger-than-RAM

datasets over a grid of regularization parameters� 1 > � 2 > � � � > � L � 0. We describe the

procedure for the Gaussian family in this section and discuss extension to general problems in the

next. A common choice isL = 100 and � 1 = max 1� j � p jx>
j r (0) j=n, the largest � at which the

estimated coe�cients start to deviate from zero. Here r (0) = y if we do not include an intercept

term and r (0) = y � �y if we do. In general, r (0) is the residual of regressingy on the unpenalized

variables, if any. The other � 's can be determined, for example, by an equally spaced array on
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the log scale. The solution path is found iteratively with a screening-solving-checking substructure

similar to the one proposed in Tibshirani et al. [2012]. Designed for large-scale and ultrahigh-

dimensional data, the BASIL algorithm can be viewed as a batch version of the strong rules. At

each iteration we attempt to �nd valid lasso solution for multiple � values on the path and thus

reduce the burden of disk reads of the big dataset. Speci�cally, as summarized in Algorithm 1, we

start with an empty strong set S(0) = ; and active set A (0) = ; . Each of the following iterations

consists of three steps: screening, �tting and checking.

Algorithm 1 BASIL for the Gaussian Model

1: Initialization : active set A (0) = ; , initial residual r (0) (with respect to the intercept or other
unpenalized variables) at� 1 = � max , a short list of initial parameters � (0) = f � 1; : : : ; � L (0) g.

2: for k = 0 to K do
3: Screening : for each 1� j � p, compute inner product with current residual c(k )

j = hx j ; r (k ) i .
Construct the strong set

S(k ) = A (k ) [ E (k )
M ;

where E(k )
M is the set of M variables in 
 n A (k ) with largest jc(k ) j.

4: Fitting : for all � 2 � (k ) , solve the lasso only on the strong setS(k ) , and �nd the coe�cients
�̂ (k ) (� ) and the residuals r (k ) (� ).

5: Checking : search for the smallest� such that the KKT conditions are satis�ed, i.e.,

�� (k ) = min
�

� 2 � (k ) : max
j 2 
 nS ( k )

(1=n)jx>
j r (k ) (� )j < �

�
:

For empty set, we de�ne �� (k ) to be the immediate previous � to � (k ) but increment M by
� M . Let the current active set A (k+1) and residualsr (k+1) de�ned by the solution at �� (k ) .
De�ne the next parameter list � (k+1) = f � 2 � (k ) : � < �� (k ) g. Extend this list if it consists of
too few elements. For� 2 � (k ) n � (k+1) , we obtain exact lasso solutions for the full problem:

�̂ S ( k ) (� ) = �̂ (k ) (� ); �̂ 
 nS ( k ) (� ) = 0 :

6: end for

In the screening step, an updated strong set is found as the candidate for the subsequent �tting.

Suppose that so far (valid) lasso solutions have been found for� 1; : : : ; � ` but not for � ` +1 . The new

set will be based on the lasso solution at� ` . In particular, we will select the top M variables with

largest absolute inner productsjhx j ; y � X �̂ (� ` )j. They are the variables that are most likely to be

active in the lasso model for the next� values. In addition, we include the ever-active variables at

� 1; : : : ; � ` because they have been \important" variables and might continue to be important at a

later stage.
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In the �tting step, the lasso is �t on the updated strong set for the next � values � ` +1 ; : : : ; � ` 0.

Here `0 is often smaller than L because we do not have to solve for all of the remaining� values on

this strong set. The full lasso solutions at much smaller� 's are very likely to have active variables

outside of the current strong set. In other words even if we were to compute solutions for those

very small � values on the current strong set, they would probably fail the KKT test. These � 's

are left to later iterations when the strong set is expanded.

In the checking step, we check if the newly obtained solutions on the strong set can be valid

part of the full solutions by evaluating the KKT condition. Given a solution �̂ S 2 RjSj to the

sub-problem at � , if we can verify for every left-out variable j that (1 =n)jhx j ; y � X S �̂ S ij < � , we

can then safely set their coe�cients to 0. The full lasso solution �̂ (� ) 2 Rp is then assembled by

letting �̂ S (� ) = �̂ S and �̂ 
 nS (� ) = 0. We look for the � value prior to the one that causes the �rst

failure down the � sequence and use its residual as the basis for the next screening. Nevertheless,

there is still chance that none of the solutions on the current strong set passes the KKT check

for the � subsequence considered in this iterations. That suggests the number of previously added

variables in the current iteration was not su�cient. In this case, we are unable to move forward

along the � sequence, but will fall back to the � value where the strong set was last updated and

include � M more variables based on the sorted absolute inner product.

The three steps above can be applied repeatedly to roll out the complete lasso solution path

for the original problem. However, if our goal is choosing the best model along the path, we can

stop �tting once an optimal model is found evidenced by the performance on a validation set. At a

high level, we run the iterative procedure on the training data, monitor the error on the validation

set, and stop when the model starts to over�t, or in other words, when the validation error shows

a clear upward trend.

Extension to general problems It is straightforward to extend the algorithm from the Gaussian

case to more general problems. In fact, the only changes we need to make are the screening step

and the strong set update step. Wherever the strong rules can be applied, we have a corresponding

version of the iterative algorithm. In Tibshirani et al. [2012], the general problem is

�̂ (� ) = argmin � 2 Rp f (� ) + �
rX

j =1

cj k� j kpj ; (1.4)
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where f is a convex di�erentiable function, and for all 1 � j � r , cj � 0; pj � 1, and � j can be a

scalar or vector whosè pj -norm is represented byk� j kpj . The general strong rule discards predictor

j if

kr j f (�̂ (� k � 1))kqj < c j (2� k � � k � 1); (1.5)

where 1=pj + 1=qj = 1. Hence, our algorithm can adapt and screen by choosing variables with

large values ofkr j f (�̂ (� k � 1))kqj that are not in the current active set. We expand in more detail

two important applications of the general rule: logistic regression and Cox's proportional hazards

model in survival analysis.

Logistic regression In the lasso penalized logistic regression [Friedman et al., 2010a] where the

observed outcomey 2 f 0; 1gn , the convex di�erential function in (1.4) is

f (� ) = �
1
n

nX

i =1

(yi logpi + (1 � yi ) log(1 � pi )) :

where pi = 1=(1 + exp( � x>
i � )) for all 1 � i � n. The rule in (1.5) is reduced to

jx>
j (y � p̂(� k � 1)) j < � k � (� k � 1 � � k );

where p̂(� k � 1) is the predicted probabilities at � = � k � 1. Similar to the Gaussian case, we can still

�t relaxed lasso and allow adjustment covariates in the model to adjust for confounding e�ect.

Cox's proportional hazards model In the usual survival analysis framework, for each sample,

in addition to the predictors x i 2 Rp and the observed timeyi , there is an associated right-censoring

indicator � i 2 f 0; 1g such that � i = 0 if failure and � i = 1 if right-censored. Let t1 < t 2 < ::: < t m

be the increasing list of unique failure times, andj (i ) denote the index of the observation failing at

time t i . The Cox's proportional hazards model [Cox, 1972] assumes the hazard for thei th individual

as hi (t) = h0(t) exp(x>
i � ) where h0(t) is a shared baseline hazard at timet. We can let f (� ) be

the negative log partial likelihood in (1.4) and screen based on its gradient at the most recent lasso
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solution as suggested in (1.5). In particular,

f (� ) = �
1
m

mX

i =1

0

@x>
j ( i ) � � log

0

@
X

j 2 R i

exp(x>
j � )

1

A

1

A ;

where Ri is the set of indicesj with yj � t i (those at risk at time t i ). We can derive the associated

rule based on (1.5) and thus the survival BASIL algorithm. Further discussion and comprehensive

experiments are included in a follow-up paper [Li et al., 2020].

Extension to the elastic net Our discussion so far focuses solely on the lasso penalty, which

aims to achieve a rather sparse set of linear coe�cients. In spite of good performance in many high-

dimensional settings, it has limitations. For example, when there is a group of highly correlated

variables, the lasso will often pick out one of them and ignore the others. This poses some hardness

in interpretation. Also, under high-correlation structure like that, it has been empirically observed

that when the predictors are highly correlated, the ridge can often outperform the lasso [Tibshirani,

1996].

The elastic net, proposed in Zou and Hastie [2005], extends the lasso and tries to �nd a sweet

spot between the lasso and the ridge penalty. It can capture the grouping e�ect of highly correlated

variables and sometimes perform better than both methods especially when the number of variables

is much larger than the number of samples. In particular, instead of imposing thè 1 penalty, the

elastic net solves the following regularized regression problem.

�̂ (� ) = argmin � 2 Rp f (� ) + � (� k� k1 + (1 � � )k� k2
2=2); (1.6)

where the mixing parameter � 2 [0; 1] determines the proportion of lasso and ridge in the penalty

term.

It is straightforward to adapt the BASIL procedure to the elastic net. It follows from the gradient

motivation of the strong rules and KKT condition of convex optimization. We take the Gaussian

family as an example. The others are similar. In the screening step, it is easy to derive that we can

still rank among the currently inactive variableson their absolute inner product with the residual

jx>
j (y � X �̂ (� k � 1)) j to determine the next candidate set. In the checking step, to verify that all the

left-out variables indeed have zero coe�cients, we need to make sure that (1=n)jx>
j (y� X �̂ (� k � 1)) j �
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�� holds for all such variables. It turns out that in our UK Biobank applications, the elastic-net

results (after selection of � and � on the validation set) do not di�er signi�cantly from the lasso

results, which will be immediately seen in the next section.

UK Biobank analysis We describe a real-data application on the UK Biobank that in fact

motivates our development of the BASIL algorithm.

The UK Biobank [Bycroft et al., 2018] is a very large, prospective population-based cohort

study with individuals collected from multiple sites across the United Kingdom. It contains exten-

sive genotypic and phenotypic detail such as genomewide genotyping, questionnaires and physical

measures for a wide range of health-related outcomes for over 500,000 participants, who were aged

40-69 years when recruited in 2006-2010. In this study, we are interested in the relationship between

an individual's genotype and his/her phenotypic outcome. While GWAS focus on identifying SNPs

that may be marginally associated with the outcome using univariate tests, we would like to �nd

relevant SNPs in a multivariate prediction model using the lasso. A recent study [Lello et al., 2018]

�ts the lasso on a subset of the variables after one-shot univariatep-value screening and suggests

improvement in explaining the variation in the phenotypes. However, the left-out variants with

relatively weak marginal association may still provide additional predictive power in a multiple

regression environment. The BASIL algorithm enables us to �t the lasso model at full scale and

gives further improvement in the explained variance over the alternative models considered.

We focused on 337,199 White British unrelated individuals out of the full set of over 500,000 from

the UK Biobank dataset [Bycroft et al., 2018] that satisfy the same set of population strati�cation

criteria as in DeBoever et al. [2018]. The dataset is partitioned randomly into training, validation

and test subsets. Each individual has up to 805,426 measured variants, and each variant is encoded

by one of the four levels where 0 corresponds to homozygous major alleles, 1 to heterozygous alleles,

2 to homozygous minor alleles and NA to a missing genotype. In addition, we have available

covariates such as age, sex, and forty pre-computed principal components of the SNP matrix.

To evaluate the predictive performance for quantitative response, we use a common measure

R-squared (R2). Given a linear estimator �̂ and data (y; X ), it is de�ned as

R2 = 1 �
ky � X �̂ k2

2

ky � �yk2
2

:
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We evaluate this criteria for all the training, validation and test sets. For a dichotomous response,

misclassi�cation error could be used but it would depend on the calibration. Instead the receiver

operating characteristic (ROC) curve provides more information and illustrates the tradeo� between

true positive and false positive rates under di�erent thresholds. The AUC computes the area under

the ROC curve | a larger value indicates a generally better classi�er. Therefore, we will evaluate

AUCs on the training, validation and test sets for dichotomous responses.

We compare the performance of the lasso with related methods to have a sense of the contribution

of di�erent components. Starting from the baseline, we �t a linear model that includes only age

and sex (Model 1 in the tables below), and then one that includes additionally the top 10 principal

components (Model 2). These are the adjustment covariates used in our main lasso �tting and we

use these two models to highlight the contribution of the SNP information over and above that of

age, sex and the top 10 PCs. In addition, the strongest univariate model is also evaluated (Model

3). This includes the 12 adjustment covariates together with the single SNP that is most correlated

with the outcome after adjustment.

Toward multivariate models, we �rst compare with a univariate method that has some multi-

variate 
avor (Models 4 and 5). We select a subset of theK most marginally signi�cant variants

(after adjusting for the covariates), and construct a new variable by linearly combining these vari-

ants using their univariate coe�cients. An OLS is then �t on the new variable together with the

adjustment variables. It is similar to a one-step partial least squares [Wold, 1975] withp-value

based truncation. We take K = 10; 000 and 100; 000 in the experiments. We further compare with

a hierarchical sequence of multivariate models where each is �t on a subset of the most signi�cant

SNPs. In particular, the `-th model selects` � 1000 SNPs with the smallest univariatep-values, and

a multivariate linear or logistic regression is �t on those variants jointly. The sequence of models

are evaluated on the validation set, and the one with the smallest validation error is chosen. We

call this method Sequential LR or SeqLR (Model 6) for convenience in the rest of the paper. As

a byproduct of the lasso, the relaxed lasso [Meinshausen, 2007] �ts a debiased model by re�tting

an OLS on the variables selected by the lasso. This can potentially recover some of the bias in-

troduced by lasso shrinkage. For the elastic-net, we �t separate solution paths with varying� 's at

� = 0 :1; 0:5; 0:9, and evaluate their performance (R2 or AUC) on the validation set. The best pair

of hyperparameters (�; � ) is selected and the corresponding test performance is reported.

In addition, we make comparison with two other Bayesian methods PRS-CS [Ge et al., 2019]
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and SBayesR [Lloyd-Jones et al., 2019]. For PRS-CS, we �rst characterized the GWAS summary

statistics using the combined set of training and validation set (n = 269; 927) with age, sex, and

the top 10 PCs as covariates using PLINK v2.00a3LM (9 Apr 2020) [Chang et al., 2015]. Using

the LD reference dataset precomputed for the European Ancestry using the 1000 genome samples

(https://github.com/getian107/PRScs ), we applied PRS-CS with the default option. We took

the posterior e�ect size estimates and computed the polygenic risk scores using PLINK2's--score

subcommand [Chang et al., 2015]. For SBayesR, we computed the sparse LD matrix using the com-

bined set of training and validation set individuals (n = 269; 927) using the -- make-sparse-ldm

subcommand implemented in GCTB version 2.0.1 [Zeng et al., 2018]. Using the GWAS sum-

mary statistics computed on the set of individuals and following the GCTB's recommendations,

we applied SBayesR with the following options: gctb --sbayes R--ldm [the LD matrix] --pi

0.95,0.02,0.02,0.01 --gamma 0.0,0.01,0.1,1 --chain-length 10000 --burn-in 2000

--exclude-mhc --gwas-summary [the GWAS summary statistics] . We report the model per-

formance on the test set.

There are thousands of measured phenotypes in the dataset. For demonstration purpose, we

analyze four phenotypes that are known to be highly or moderately heritable and polygenic. For

these complex traits, univariate studies may not �nd SNPs with smaller e�ects, but the lasso model

may include them and predict the phenotype better. We look at two quantitative traits: standing

height and body mass index (BMI) [Tanigawa et al., 2019], and two qualitative traits: asthma and

high cholesterol (HC) [DeBoever et al., 2018].

We �rst summarize the test performance of di�erent methods on the four phenotypes in Fig-

ure 1.2. The lasso and elastic net show signi�cant improvement in testR2 and AUC over the other

competing methods. Details for the four phenotypes are given in the next section. A compari-

son of the univariate p-values and the lasso coe�cients for all these traits is shown in the form of

Manhattan plots in the Appendix 1.5 (Supplementary Figure 1.14, 1.15).
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Figure 1.2: Comparison of di�erent methods on the test set. R2 are evaluated for continuous phenotypes
height and BMI, and AUC evaluated for binary phenotypes asthma and high cholesterol.

Standing Height Height is a polygenic and heritable trait that has been studied for a long time.

It has been used as a model for other quantitative traits, since it is easy to measure reliably. From

twin and sibling studies, the narrow sense heritability is estimated to be 70-80% [Silventoinen et al.,

2003, Visscher et al., 2006, 2010]. Recent estimates controlling for shared environmental factors

present in twin studies calculate heritability at 0.69 [Zaitlen et al., 2013, Hemani et al., 2013]. A

linear based model with common SNPs explains 45% of the variance [Yang et al., 2010] and a model

including imputed variants explains 56% of the variance, almost matching the estimated heritability

[Yang et al., 2015]. So far, GWAS studies have discovered 697 associated variants that explain one
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�fth of the heritability [Lango Allen et al., 2010, Wood et al., 2014]. Recently, a large sample study

was able to identify more variants with low frequencies that are associated with height [Marouli

et al., 2017]. Using lasso with the larger UK Biobank dataset allows both a better estimate of the

proportion of variance that can be explained by genomic predictors and simultaneous selection of

SNPs that may be associated. The results are summarized in Table 1.1. The associatedR2 curves

for the lasso and the relaxed lasso are shown in Figure 1.3. The residuals of the optimal lasso

prediction are plotted in Figure 1.4.

Model Form R2
train R2

val R2
test Size

(1) Age + Sex 0.5300 0.5260 0.5288 2
(2) Age + Sex + 10 PCs 0.5344 0.5304 0.5336 12
(3) Strong Single SNP 0.5364 0.5323 0.5355 13
(4) 10K Combined 0.5482 0.5408 0.5444 10,012
(5) 100K Combined 0.5833 0.5515 0.5551 100,012
(6) Sequential LR 0.7416 0.6596 0.6601 17,012
(7) Lasso 0.8304 0.6992 0.6999 47,673
(8) Relaxed Lasso 0.7789 0.6718 0.6727 13,395
(9) Elastic Net 0.8282 0.6991 0.6998 48,256
(10) PRS-CS 0.5692 � 0.5615 148,052
(11) SBayesR 0.5397 � 0.5368 667,045

Table 1.1: R2 values for height. For sequential LR, lasso and relaxed lasso, the chosen model is based on
maximum R2 on the validation set. Model (3) to (8) each includes Model (2) plus their own speci�cation
as stated in the Form column. The validation results for PRS-CS and SBayesR are not available because
we used a combined training and validation set for training.

A large number (47,673) of SNPs need to be selected in order to achieve the optimalR2
test =

0:6999 for the lasso and similarly for the elastic-net. Comparatively, the relaxed lasso sacri�ces

some predictive performance by including a much smaller subset of variables (13,395). Past the

optimal point, the additional variance introduced by re�tting such large models may be larger than

the reduction in bias. The large models con�rm the extreme polygenicity of standing height.

In comparison to the other models, the lasso performs signi�cantly better in terms ofR2
test

than all univariate methods, and outperforms multivariate methods based on univariate p-value

ordering. That demonstrates the value of simultaneous variable selection and estimation from a

multivariate perspective, and enables us to predict height to within 10 cm about 95% of the time

based only on SNP information (together with age and sex). We also notice that the sequential

linear regression approach does a good job, whose performance gets close to that of the relaxed

lasso. It is straightforward and easy to implement using existing softwares such asPLINK [Chang
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Figure 1.3: R2 plot for height. The top axis shows the number of active variables in the model.

Figure 1.4: Left: actual height versus predicted height on 5000 random samples from the test set. The
correlation between actual height and predicted height is 0.9416. Right: histogram of the lasso residuals
for height. Standard deviation of the residual is 5.05 (cm).
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Method R2
val R2

test h2
test Cortest Cortest �f age, sexg

Lasso 69.92% 69.99% 35.66% 0.8366 0.4079
Prescreened lasso 69.40% 69.56% 34.73% 0.8340 0.4025

Table 1.2: Comparison of prediction results on height with the model trained following the same procedure
as ours except for an additional prescreening step as done in Lello et al. [2018]. In addition to R2 , proportion
of residual variance explained (denoted by h2

test ) and correlation between the �tted values and actual values
are computed. We also compute an adjusted correlation between the residual after regressing age and sex
out from the prediction and the residual after regressing age and sex out from the true response, both on
the test set.

et al., 2015].

Recently Lello et al. [2018] apply a lasso based method to predict height and other phenotypes

on the UK Biobank. Instead of �tting on all QC-satis�ed SNPs (as stated in Section 1.4), they

pre-screen 50K or 100K most signi�cant SNPs in terms ofp-value and apply lasso on that set only.

In addition, although both datasets come from the same UK Biobank, the subset of individuals

they used is larger than ours. While we restrict the analysis to the unrelated individuals who have

self-reported white British ancestry, they look at Europeans including British, Irish and Any Other

White. For a fair comparison, we follow their procedure (pre-screening 100K SNPs) but run on our

subset of the dataset. The results are shown in Table 1.2. We see that the improvement of the

full lasso over the prescreened lasso is almost 0:5% in test R2, and 1% relative to the proportion of

residual variance explained after covariate adjustment.

Further, we compare the full lasso coe�cients and the univariate p-values from GWAS in Fig-

ure 1.5. The vertical grey dotted line indicates the top 100K cuto� in terms of p-value. We see

although a general decreasing trend appears in the magnitude of the lasso coe�cients with respect

to increasingp-values (decreasing� log10(p)), there are a number of spikes even in the largep-value

region which is considered marginally insigni�cant. This shows that variants beyond the strongest

univariate ones contribute to prediction.

Body Mass Index (BMI) BMI is another polygenic trait that is widely studied. Like height,

it is heritable and easily measured. It is also a trait of interest, since obesity is a risk factor for

diseases such as type 2 diabetes and cardiovasclar disease. Recent studies estimate heritability at

0.42 [Zaitlen et al., 2013, Hemani et al., 2013] and 27% of the variance can be explained using a

genomic model [Yang et al., 2015]. We expect the heritability to be lower than that for height,

since intuitively speaking, one component of the body mass, weight, should heavily depend on
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Figure 1.5: Comparison of the lasso coe�cients and univariate p-values for height. The index on the
horizontal axis represents the SNPs sorted by their univariate p-values. The red curve associated with
the left vertical axis shows the � log10 of the univariate p-values. The blue bars associated with the right
vertical axis show the corresponding lasso coe�cients for each (sorted) SNP. The horizontal dotted lines in
gray identi�es lasso coe�cients of � 0:05. The vertical one represents the 100K cuto� used in Lello et al.
[2018].

environmental factors, for example, individual's lifestyle. From GWAS studies, 97 associated loci

have been identi�ed, but they only account for 2.7% of the variance [Speliotes et al., 2010, Locke

et al., 2015]. Although the estimates of heritability are not precise, there may be more missing

heritability for BMI than for height. We also �nd lower R2 values using the lasso. The results are

summarized in Table 1.3. TheR2 curves for the lasso and the relaxed lasso are shown in Figure 1.6.

From the table, we see that more than 26,000 variants are selected by the lasso to attain anR2

greater than 10%. In constrast, the relaxed lasso and the sequential linear regression use around

one-tenths of the variables, and end up with degraded predictive performance both at around 5%.

From Figure 1.7, we see further evidence that the actual BMI is of high variability and hard to

predict with the lasso model | the correlation between the predicted value and the actual value

is 0.3256. From the residual histogram on the right, we also see the distribution is skewed to the

right, suggesting a number of exceedingly high observed values than the ones predicted by the

model. Nevertheless, we are able to predict BMI within 9 kg/m2 about 95% of the time.
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Model Form R2
train R2

val R2
test Size

(1) Age + Sex 0.0092 0.0089 0.0083 2
(2) Age + Sex + 10 PCs 0.0104 0.0103 0.0099 12
(3) (2) + Single SNP 0.0134 0.0128 0.0124 13
(4) (2) + 10K Combined 0.0384 0.0195 0.0210 10,012
(5) (2) + 100K Combined 0.1307 0.0064 0.0093 100,012
(6) Sequential LR 0.0865 0.0385 0.0395 2,012
(7) Lasso 0.3196 0.1017 0.1052 26,060
(8) Relaxed Lasso 0.1609 0.0504 0.0537 2,585

Table 1.3: R2 values for BMI. For lasso and relaxed lasso, the chosen model is based on maximumR2 on
the validation set. Model (3) to (8) each includes Model (2) plus their own speci�cation as stated in the
Form column.

Figure 1.6: R2 plot for BMI. The top axis shows the number of active variables in the model.

Asthma Asthma is a common respiratory disease characterized by in
ammation of airways in

the lungs and di�culty breathing. It is another complex, polygenic trait that is associated with

both genetic and environmental factors. Our results are summarized in Table 1.4. The AUC curves

for the lasso and the relaxed lasso are shown in Figure 1.8. In addition, for each test sample, we

compute the percentile of its predicted score/probability among the entire test cohort, and create

box plots of such percentiles separately for the control group and the case group. We see on the left
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Figure 1.7: Left: actual BMI versus predicted BMI on 5000 random samples from the test set. The
correlation between actual BMI and predicted BMI is 0.3256. Right: residuals of lasso prediction for BMI.
Standard deviation of the residual is 4.51 kg/m 2 .

Model Form AUC train AUC val AUC test Size
(1) Age + Sex 0.5293 0.5297 0.5320 2
(2) Age + Sex + 10 PCs 0.5342 0.5344 0.5367 12
(3) (2) + Single SNP 0.5463 0.5476 0.5454 13
(4) (2) + 10K Combined 0.5783 0.5580 0.5531 10,012
(5) (2) + 100K Combined 0.6884 0.5644 0.5580 100,012
(6) Sequential LR 0.6601 0.5883 0.5884 2,012
(7) Lasso 0.7692 0.6159 0.6126 5,936
(8) Relaxed Lasso 0.6747 0.5988 0.5955 621

Table 1.4: AUC values for asthma. For lasso and relaxed lasso, the chosen model is based on maximum
AUC on the validation set. Model (3) to (8) each includes Model (2) plus their own speci�cation as stated
in the Form column.

of Figure 1.9 that there is a signi�cant overlap between the box plots of the two groups, suggesting

that asthma is di�cult to predict. This can also be seen from the AUC value and the ROC curve in

Figure 1.12. That being said, the multivariate lasso still does much better than the baseline model

and the strongest univariate model. On the right of Figure 1.9, we stratify the prediction percentile

into 10 bins, and compute the overall prevalence within each bin. We observe a clear upward trend

that provides further evidence that we manage to capture some genetic signal there.

High Cholesterol High cholesterol is characterized by high amounts of cholesterol present in the
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Figure 1.8: AUC plot for asthma. The top axis shows the number of active variables in the model.

Figure 1.9: Results for asthma based on the best lasso model. Left: box plot of the percentile of the linear
prediction score among cases versus controls. Right: the strati�ed prevalence across di�erent percentile bins
based on the predicted scores by the optimal lasso.

blood and is a risk factor for cardiovascular disease. It is highly heritable and may be polygenic.

Our results are summarized in Table 1.5. The AUC curves for the lasso and the relaxed lasso are

shown in Figure 1.10. Similarly the ROC curve for the best lasso model is shown in Figure 1.12,
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Model Form AUC train AUC val AUC test Size
(1) Age + Sex 0.6918 0.6952 0.6883 2
(2) Age + Sex + 10 PCs 0.6927 0.6959 0.6889 12
(3) (2) + Single SNP 0.6963 6982 0.6921 13
(4) (2) + 10K Combined 0.7402 0.6956 0.6880 10,012
(5) (2) + 100K Combined 0.8518 0.6607 0.6547 100,012
(6) Sequential LR 0.7540 0.7167 0.7137 1,012
(7) Lasso 0.7832 0.7259 0.7191 1,371
(8) Relaxed Lasso 0.7273 0.7220 0.7166 239

Table 1.5: AUC values for high cholesterol. For lasso and relaxed lasso, the chosen model is based on
maximum AUC on the validation set. Model (3) to (8) each includes Model (2) plus their own speci�cation
as stated in the Form column.

Figure 1.10: AUC plot for high cholesterol. The top axis shows the number of active variables in the
model.

and box plots for the two groups and a strati�ed prevalence plot are shown in Figure 1.11. We

see that the distributions of predictions made on non-HC individuals and on HC individuals are

clearly di�erent from each other, suggesting good classi�cation results. That is re
ected in the

AUC measure listed in the table. Nevertheless, it is not much better than the result of the base

model including only covariates age and sex.
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Figure 1.11: Results for high cholesterol based on the best lasso model. Left: box plot of the percentile
of the linear prediction score among cases versus controls. Right: the strati�ed prevalence across di�erent
percentile bins based on the predicted scores by the optimal lasso.

Figure 1.12: ROC curves. Left: asthma. Right: high cholesterol.

1.3 Discussion

In this paper, we propose a novel batch screening iterative lasso (BASIL) algorithm to �t the full

lasso solution path for very large and high-dimensional datasets. It can be used, among the others,

for Gaussian linear model, logistic regression and Cox regression, and can be easily extended to �t

the elastic-net with mixed `1=`2 penalty. It enjoys the advantages of high e�ciency, 
exibility and

easy implementation. For SNP data as in our applications, we develop anR packagesnpnet that

incorporates SNP-speci�c optimizations and are able to process datasets of wide interest from the

UK Biobank.

In our algorithm, the choice of M is important for the practical performance. It trades o�
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between the number of iterations and the computation per iteration. With a small M or small

update of the strong set, it is very likely that we are unable to proceed fast along the� sequence in

each iteration. Although the design of the BASIL algorithm guarantees that for any M; � M > 0,

we are able to obtain the full solution path after su�cient iterations, many iterations will be needed

if M is chosen too small, and the disk I/O cost will be dominant. In contrast, a largeM will incur

more memory burden and more expensive lasso computation, but with the hope to �nd more valid

lasso solutions in one iteration, save the number of iterations and the disk I/O. It is hard to identify

the optimal M a priori. It depends on the computing architecture, the size of the problem, the

nature of the phenotype, etc. For this reason, we tend to leave it as a subjective parameter to

the user's choice. However in the meantime, we do plan to provide a more systematic option to

determine M , which leverages the strong rules again. Recall that in the simple setting with no

intercept and no covariates, the initial strong set is constructed by jx>
j yj � 2� � � max . Since the

strong rules rarely make mistakes and are fairly e�ective in discarding inactive variables, we can

guide the choice of batch sizeM by the number of � values we want to cover in the �rst iteration.

For example, one may want the strong set to be large enough to solve for the �rst 10� 's in the

�rst iteration. We can then let M = jf 1 � j � p : jx>
j yj > 2� 10 � � max gj. Despite being adaptive

to the data in some sense, this approach is by no means computationally optimal. It is more based

on heuristics that the iteration should make reasonable progress along the path.

Our numerical studies demonstrate that the iterative procedure e�ectively reduces a big-n-big-

p lasso problem into one that is manageable by in-memory computation. In each iteration, we

are able to use parallel computing when applying screening rules to �lter out a large number of

variables. After screening, we are left with only a small subset of data on which we are able to

conduct intensive computation like cyclical coordinate descent all in memory. For the subproblem,

we can use existing fast procedures for small or moderate-size lasso problems. Thus, our method

allows easy reuse of previous software with lightweight development e�ort.

When a large number of variables is needed in the optimal predictive model, it may still require

either large memory or long computation time to solve the smaller subproblem. In that case,

we may consider more scalable and parallelizable methods like proximal gradient descent [Parikh

and Boyd, 2014] or dual averaging [Xiao, 2010, Duchi et al., 2012]. One may think why don't we

directly use these methods for the original full problem? First, the ultra high dimension makes

the evaluation of gradients, even on mini-batch very expensive. Second, it can take a lot more
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steps for such �rst-order methods to converge to a good objective value. Moreover, the speed of

convergence depends on the choice of other parameters such as step size and additional constants

in dual averaging. For those reasons, we still prefer the tuning-free and fast coordinate descent

methods when the subproblem is manageable.

The lasso has nice variable selection and prediction properties if the linear model assumption

together with some additional assumptions such as the restricted eigenvalue condition [Bickel et al.,

2009] or the irrepresentable condition [Zhao and Yu, 2006] holds. In practice, such assumptions do

not always hold and are often hard to verify. In our UK Biobank application, we don't attempt to

verify the exact conditions, and the selected model can be subject to false positives. However, we

demonstrate relevance of the selection via empirical consistency with the GWAS results. We have

seen superior prediction performance by the lasso as a regularized regression method compared to

other methods. More importantly, by leveraging the sparsity property of the lasso, we are able to

manage the ultrahigh-dimensional problem and obtain a computationally e�cient solution.

When comparing with other methods in the UK Biobank experiments, due to the large number

of test samples (60,000+), we are con�dent that the lasso and elastic-net methods are able to do

signi�cantly better than other methods. In fact, the standard error of R2 can be easily derived

by the delta method, and the standard error of the AUC can be estimated and upper bounded by

1=(4 min(m; n)) [DeLong et al., 1988, Cortes and Mohri, 2005], wherem; n represents the number

of positive and negative samples. For height and BMI, it turns out that the standard errors are

roughly 0.001, or 0.1%. For asthma and high cholesterol, considering the case rate around 12%,

the standard errors can be upper bounded by 0.005, or 0.5%. Therefore, on height, BMI and

asthma, the lasso and elastic net perform signi�cantly better than the other methods, while on

high cholesterol, the Sequential LR and the relaxed lasso have competitive performance as well.

1.4 Materials and Methods

Variants in the BASIL framework Some other very useful components can be easily incorpo-

rated into the BASIL framework. We will discuss debiasing using the relaxed lasso and the inclusion

of adjustment covariates.

The lasso is known to shrink coe�cients to exclude noise variables, but sometimes such shrink-

age can degrade the predictive performance due to its e�ect on actual signal variables. Meinshausen
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[2007] introduces the relaxed lasso to correct for the potential over-shrinkage of the original lasso

estimator. They propose a re�tting step on the active set of the lasso solution with less regular-

ization, while a common way of using it is to �t a standard OLS on the active set. The active set

coe�cients are then set to

�̂ A ;Relax (� ) = argmin � A 2 RjAj ky � X A � A k2
2;

whereas the coe�cients for the inactive set remain at 0. This re�tting step can revert some of the

shrinkage bias introduced by the vanilla lasso. It doesn't always reduce prediction error due to the

accompanied increase in variance when there are many variables in the model or when the signals

are weak. That being said, we can still insert a relaxed lasso step with little e�ort in our iterative

procedure: once a valid lasso solution is found for a new� , we may re�t with OLS. As we iterate,

we can monitor validation error for the lasso and the relaxed lasso. The relaxed lasso will generally

end up choosing a smaller set of variables than the lasso solution in the optimal model.

In some applications such as GWAS, there may be confounding variablesZ 2 Rn � q that we

want to adjust for in the model. Population strati�cation, de�ned as the existence of a systematic

ancestry di�erence in the sample data, is one of the common factors in GWAS that can lead to

spurious discoveries. This can be controlled for by including some leading principal components of

the SNP matrix as variables in the regression [Price et al., 2006]. In the presence of such variables,

we instead solve

(�̂ (� ); �̂ (� )) = argmin � 2 Rq ;� 2 Rp
1

2n
ky � Z� � X� k2

2 + � k� k1: (1.7)

This variation can be easily handled with small changes in the algorithm. Instead of initializing

the residual with the responsey, we set r (0) equal to the residual from the regression ofy on the

covariates. In the �tting step, in addition to the variables in the strong set, we include the covariates

but leave their coe�cients unpenalized as in (1.7). Notice that if we want to �nd relaxed lasso �t

with the presence of adjustment covariates, we need to include those covariates in the OLS as well,

i.e.,

(�̂ Relax (� ); �̂ A ;Relax (� )) = argmin � 2 Rq ;� A 2 RjAj ky � Z� � X A � A k2
2: (1.8)
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UK Biobank experiment details We focused on 337,199 White British unrelated individuals

out of the full set of over 500,000 from the UK Biobank dataset [Bycroft et al., 2018] that satisfy

the same set of population strati�cation criteria as in DeBoever et al. [2018]: (1) self-reported

White British ancestry, (2) used to compute principal components, (3) not marked as outliers for

heterozygosity and missing rates, (4) do not show putative sex chromosome aneuploidy, and (5)

have at most 10 putative third-degree relatives. These criteria are meant to reduce the e�ect of

confoundedness and unreliable observations.

The number of samples is large in the UK Biobank dataset, so we can a�ord to set aside

an independent validation set without resorting to the costly cross-validation to �nd an optimal

regularization parameter. We also leave out a subset of observations as test set to evaluate the �nal

model. In particular, we randomly partition the original dataset so that 60% is used for training,

20% for validation and 20% for test. The lasso solution path is �t on the training set, whereas the

desired regularization is selected on the validation set, and the resulting model is evaluated on the

test set.

We are going to further discuss some details in our application that one might also encounter

in practice. They include adjustment for confounders, missing value imputation and variable stan-

dardization in the algorithm.

In genetic studies, spurious associations are often found due to confounding factors. Among the

others, one major source is the so-called population strati�cation [Patterson et al., 2006]. To adjust

for that e�ect, it is common is to introduce the top principal components and include them in the

regression model. Therefore in the lasso method, we are going to solve (1.7) where in addition to

the SNP matrix X , we let Z include covariates such as age, sex and the top 10 PCs of the SNP

matrix.

Missing values are present in the dataset. As quality control normally done in genetics, we

�rst discard observations whose phenotypic value of interest is not available. We further exclude

variants whose missing rate is greater than 10% or the minor allele frequency (MAF) is less than

0:1%, which results in around 685,000 SNPs for height. In particulr, 685,362 for height, 685,371 for

BMI, 685,357 for asthma and 685,357 for HC. The number varies because the criteria are evaluated

on the subset of individuals whose phenotypic value is observed (after excluding the missing ones),

which can be di�erent across di�erent phenotypes. For those remaining variants, mean imputation

is conducted to �ll the missing SNP values; that is, the missing values in every SNP are imputed
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with the mean observed level of that SNP in the population under study.

When it comes to the lasso �tting, there are some subtleties that can a�ect its variable selection

and prediction performance. One of them is variable standardization. It is often a step done

without much thought to deal with heterogeneity in variables so that they are treated fairly in the

objective. However in our studies, standardization may create some undesired e�ect. To see this,

notice that all the SNPs can only take values in 0, 1, 2 and NA | they are already on the same

scale by nature. As we know, standardization would use the current standard deviation of each

predictor as the divisor to equalize the variance across all predictors in the lasso �tting that follows.

In this case, standardization would unintentionally in
ate the magnitude of rare variants and give

them an advantage in the selection process since their coe�cients e�ectively receive less penalty

after standardization. In Figure 1.13, we can see the distribution of standard deviation across all

variants in our dataset. Hence, to avoid potential spurious �ndings, we choose not to standardize

the variants in the experiments.

Figure 1.13: Histogram of the standard deviations of the SNPs. They are computed after mean imputation
of the missing values because they would be the exact standardization factors to be used if the lasso were
applied with variable standardization on the mean-imputed SNP matrix.

Computational optimization in software implementation Among the iterative steps in

BASIL, screening and checking are where we need to deal with the full dataset. To deal with the
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memory bound, we can use memory-mapped I/O. InR, bigmemory [Kane et al., 2013] provides

a convenient implementation for that purpose. That being said, we do not want to rely on that

for intensive computation modules such as cyclic coordinate descent, because frequent visits to the

on-disk data would still be slow. Instead, since the subset of strong variables would be small, we

can a�ord to bring them to memory and do fast lasso �tting there. We only use the full memory-

mapped dataset in KKT checking and screening. Moreover since checking in the current iteration

can be done together with the screening in the next iteration, e�ectively only one expensive pass

over the full dataset is needed every iteration.

In addition, we use a set of techniques to speed up the computation. First, the KKT check can be

easily parallelized by splitting on the features when multi-core machines are available. The speedup

of this part is immediate and (slightly less than) proportional to the number of cores available.

Second, speci�c to the application, we exploit the fact that there are only 4 levels for each SNP

value and design a faster inner product routine to replace normal 
oat number multiplication in

the KKT check step. In fact, given any SNP vector x 2 f 0; 1; 2; � gn where � is the imputed value

for the missing ones, we can write the dot product with a vectorr 2 Rn as

x> r =
nX

i =1

x i r i = 1 �
X

i :x i =1

r i + 2 �
X

i :x i =2

r i + � �
X

i :x i = �

r i :

We see that the terms corresponding to 0 SNP value can be ignored because they don't contribute

to the �nal result. This will signi�cantly reduce the number of arithmetic operations needed to

compute the inner product with rare variants. Further, we only need to set up 3 registers, each

for one SNP value accumulating the corresponding terms inr . A series of multiplications is then

converted to summations. In our UK Biobank studies, although the SNP matrix is not sparse

enough to exploit sparse matrix representation, it still has around 70% 0's. We conduct a small

experiment to compare the time needed to computeX > R, where X 2 f 0; 1; 2; 3gn � p; R 2 Rp� k .

The proportions for the levels in X are about 70%; 10%; 10%; 10%, similar to the distribution of

SNP levels in our study, and R resembles the residual matrix when checking the KKT condition.

The number of residual vectors isk = 20. The mean time over 100 repetitions is shown in Table

1.6.

We implement the procedure with all the optimizations in an R package calledsnpnet , which is

currently available at https://github.com/junyangq/snpnet . It assumes pgen �le format [Chang
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Multiplication Method n = 200; p = 800 n = 2000; p = 8000
Standard 3.20 306.01

SNP-Optimized 1.32 130.21

Table 1.6: Timing performance (milliseconds) on multiplication of SNP matrix and residual matrix. The
methods are all implemented in C++ and run on a Macbook with 2.9 GHz Intel Core i7 and 8 GB 1600
MHz DDR3.

et al., 2015] of the SNP matrix, �ts the lasso solution path and allows early stopping if a validation

dataset is provided. In order to achieve better e�ciency, we suggest usingsnpnet together with

glmnetPlus , a warm-started version of glmnet , which is currently available at https://github.

com/junyangq/glmnetPlus . It allows one to provide a good initialization of the coe�cients to �t

part of the solution path instead of always starting from the all-zero solution by glmnet .

Related methods and packages There are a number of existing screening rules for solving

big lasso problems. Sobel et al. [2009] use a screened set to scale down the logistic lasso problem

and check the KKT condition to validate the solution. Their focus, however, is on selecting a

lasso model of particular size and only the initial screened set is expanded if the KKT condition is

violated. In contrast, we are interested in �nding the whole solution path (before over�tting). We

adopt a sequential approach and keep updating the screened set at each iteration. This allows us

to potentially keep the screened set small as we move along the solution path. Other rules include

the SAFE rule [El Ghaoui et al., 2010], Sure Independence Screening [Fan and Lv, 2008], and the

DPP and EDPP rules [Wang et al., 2015].

We expand the discussion on these screening rules a bit. Fan and Lv [2008] exploits marginal

information of correlation to conduct screening but the focus there is not optimization algorithm.

Most of the screening rules mentioned above (except for EDPP) use inner product with the current

residual vector to measure the importance of each predictor at the next� | those under a threshold

can be ignored. The key di�erence across those rules is the threshold de�ned and whether the

resulting discard is safe. If it is safe, one can guarantee that only one iteration is needed for each�

value, compared with others that would need more rounds if an active variable was falsely discarded.

Though the strong rules rarely make this mistake, safe screening is still a nice feature to have in

single-� solutions. However, under the batch mode we consider due to the desire of reducing the

number of full passes over the dataset, the advantage of safe threshold may not be as much. In

fact, one way we might be able to leverage the safe rules in the batch mode is to �rst �nd out the
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set of candidate predictors for the several� values up to � k we wish to solve in the next iteration

based on the current inner products and the rules' safe threshold, and then solve the lasso for these

parameters. Since these rules can often be conservative, we would then have strong incentive to

solve for, say, one further� value � k+1 because if the current screening turns out to be a valid one

as well, we will �nd one more lasso solution and move one step forward along the� sequence we

want to solve for. This can potentially save one iteration of the procedure and thus one expensive

pass over the dataset. The only cost there is computing the lasso solution for one more� k+1 and

computing inner products with one more residual vector at � k+1 (to check the KKT condition).

The latter can be done in the same pass as we compute inner products at� k for preparing the

screening in the next iteration, and so no additional pass is needed. Thus under the batch mode,

the property of safe screening may not be as important due to the incentive of aggressive model

�tting. Nevertheless it would be interesting to see in the future EDPP-type batch screening. It

uses inner products with a modi�cation of the residual vector. Our algorithm still focuses of inner

products with the vanilla residual vector.

To address the large-scale lasso problems, several packages have been developed such asbiglasso

[Zeng and Breheny, 2017],bigstatsr [Priv�e et al., 2018], oem [Huling and Qian, 2018] and the lasso

routine from PLINK 1.9 [Chang et al., 2015].

Among them, oem specializes in tall data (big n) and can be slow whenp > n . In many real

data applications including ours, the data are both large-sample and high-dimensional. However,

we might still be able to useoem for the small lasso subroutine since a large number of variables

have already been excluded. The other packages,biglasso , bigstatsr , PLINK 1.9, all provide

e�cient implementations of the pathwise coordinate descent with warm start. PLINK 1.9 is

speci�cally developed for genetic datasets and is widely used in GWAS and research in population

genetics. Inbigstatsr , the big spLinReg function adapts from the biglasso function in biglasso

and incorporates a Cross-Model Selection and Averaging (CMSA) procedure, which is a variant

of cross-validation that saves computation by directly averaging the results from di�erent folds

instead of retraining the model at the chosen optimal parameter. They both use memory-mapping to

process larger-than-RAM, on-disk datasets as if they were in memory, and based on that implement

coordinate descent with strong rules and warm start.

The main di�erence between BASIL and the algorithm these packages use is that BASIL tries to

solve a series of models every full scan of the dataset (at checking and screening) and thus e�ectively
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reduce the number of passes over the dataset. This di�erence may not be signi�cant in small or

moderate-sized problems, but can be critical in big data applications especially when the dataset

cannot be fully loaded into the memory. A full scan of a larger-than-RAM dataset can incur a lot

of swap-in/out between the memory and the disk, and thus a lot of disk I/O operations, which is

known to be orders of magnitude slower than in-memory operations. Thus reducing the number of

full scans can greatly improve the overall performance of the algorithm.

Aside from potential e�ciency consideration, all of those packages aforementioned have to re-

implement a variety of features existent in many small-data solutions but for big-data context.

Nevertheless, currently they don't provide as much functionality as needed in our real-data ap-

plication. First, in the current implementations, PLINK 1.9 only supports the Gaussian family,

biglasso and bigstatsr only supports the Gaussian and binomial families, whereassnpnet can

easily extend to other regression families and already built in Gaussian, binomial and Cox fami-

lies. Also, biglasso , bigstatsr and PLINK 1.9 all standardize the predictors beforehand, but in

many applications such as our UK Biobank studies, it is more reasonable to leave the predictors

unstandardized. In addition, it can take some e�ort to convert the data to the desired format by

these packages. This would be a headache if the raw data is in some special format and one cannot

a�ord to �rst convert the full dataset into an intermediate format for which a tool is provided to

convert to the desired one bybiglasso or bigstatsr . This can happen, for example, if the raw

data is highly compressed in a special format. For the BED binary format we work with in our

application, readRAWbig.matrix function from BGData can convert a raw �le to a big.matrix

object desired bybiglasso , and snp readBed function from bigsnpr [Priv�e et al., 2018] allows one

to convert it to FBMobject desired by bigstatsr . However, bigsnpr doesn't take input data that

has any missing values, which can prevalent in an SNP matrix (as in our application). Although

PLINK 1.9 works directly with the BED binary �le, its lasso solver currently only supports the

Gaussian family, and it doesn't return the full solution path. Instead it returns the solution at the

smallest � value computed and needs a good heritability estimate as input from the user, which

may not be immediately available.

We summarize the main advantages of the BASIL algorithm:

� Input data 
exibility . Our algorithm allows one to deal directly with any data type as

long as the screening and checking steps are implemented, which is often very lightweight

development work like matrix multiplication. This can be important in large-scale applications
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especially when the data is stored in a compressed format or a distributed way since then

we would not need to unpack the full data and can conduct KKT check and screening on its

original format. Instead only a small screened subset of the data needs to be converted to the

desired format by the lasso solver in the �tting step.

� Model 
exibility . We can easily transfer the modeling 
exibility provided by existing

packages to the big data context, such as the options of standardization, sample weights,

lower/upper coe�cient limits and other families in generalized linear models provided by

existing packages such asglmnet . This can be useful, for example, when we may not want to

standardize predictors already in the same unit to avoid unintentionally di�erent penalization

of the predictors due to di�erence in their variance.

� E�ortless development . The BASIL algorithm allows one to maximally reuse the existing

lasso solutions for small or moderate-sized problems. The main extra work would be an

implementation of batch screening and KKT check with respect to a particular data type.

For example, in the snpnet package, we are able to quickly extend the in-memoryglmnet

solution to large-scale, ultrahigh-dimentional SNP data. Moreover, the existing convenient

data interface provided by the BEDMatrix package further facilitates our implementation.

� Computational e�ciency . Our design reduces the number of visits to the original data

that sits on the disk, which is crucial to the overall e�ciency as disk read can be orders of

magnitude slower than reading from the RAM. The key to achieving this is to bring batches

of promising variables into the main memory, hoping to �nd the lasso solutions for more than

one � value each iteration and check the KKT condition for those � values in one pass of the

entire dataset.

Lastly, we are going to provide some timing comparison with existing packages. As mentioned

in previous sections, those packages provide di�erent functionalities and have di�erent restrictions

on the dataset. For example, most of them (biglasso, bigstatsr ) assume that there are no missing

values, or the missing ones have already been imputed. Inbigsnpr , for example, we shouldn't have

SNPs with 0 MAF either. Some packages always standardize the variants before �tting the lasso.

To provide a common playground, we create a synthetic dataset with no missing values, and follow

a standardized lasso procedure in the �tting stage, simply to test the computation. The dataset has
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R Package Elapsed Time (minutes)
bigstatsr [Priv�e et al., 2018] 2.93 + 56.80

bigstatsr + CMSA [Priv�e et al., 2018] 2.93 + 101.75
biglasso [Zeng and Breheny, 2017] 4.55 + 54.27

PLINK [Chang et al., 2015] 53.52
snpnet 44.79

Table 1.7: Timing comparison on a synthetic dataset of size n = 50 ; 000 and p = 100; 000. The time for
bigstatsr and biglasso has two components: one for the conversion to the desired data type and the other
for the actual computation. The experiments are all run with 16 cores and 64 GB memory.

50,000 samples and 100,000 variables, and each takes value in the SNP range, i.e., in 0, 1, or 2. We

�t the �rst 50 lasso solutions along a pre�x � sequence that contains 100 initial� values (like early

stopping for most phenotypes). The total time spent is displayed in Table 1.7. Forbigstatsr , we

include two versions since it does cross-validation by default. In one version, we make it comply with

our single train/val/test split, while in the other version, we use its default 10-fold cross-validation

version | Cross-Model Selection and Averaging (CMSA). Notice that the �nal solution of iCMSA

is di�erent from the exact lasso solution on the full data because the returned coe�cient vector is

a linear combination of the coe�cient vectors from the 10 folds rather than from a retrained model

on the full data. We uses 128GB memory and 16 cores for the computation.

From the table, we see thatsnpnet is at about 20% faster than other packages concerned. The

numbers before the \+" sign are the time spent on converting the raw data to the required data

format by those packages. The second numbers are time spent on actual computation.

It is important to note though that the performance relies not only on the algorithm, but also

heavily on the implementations. The other packages in comparison all have their major computation

done with C++ or Fortran. Ours, for the purpose of meta algorithm where users can easily integrate

with any lasso solver inR, still has a signi�cant portion (the iterations) in R and multiple rounds of

cross-language communication. That can degrade the timing performance to some degree. If there

is further pursuit of speed performance, there is still space for improvement by more designated

implementation.
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1.5 Appendix: Manhattan Plots

The Manhattan plots in Figure 1.14 (generated using theqqman package [Turner, 2018]) show

the magnitude of the univariate p-values and the size of the lasso coe�cients for each gene for the

two quantitative traits and two binary traits. The coe�cients are plotted for the model with the

optimal R2 value on the validation set. The variants highlighted in green in both plots are those

that have coe�cient magnitudes above the 99th percentile of all coe�cient magnitudes for the trait.

The horizontal line in the p-value plot is plotted at the genome-wide Bonferroni correctedp-value

threshold 5 � 10� 8. There are two main points we would like to highlight:

� The lasso manages to capture signi�cant univariate predictors in each genetic region. Due

to possible correlation it does not pick up the variants with similarly small p-values located

nearby.

� Some of the variants with weak univariate signals are also identi�ed and turn out to be crucial

to the predictive performance of the lasso.

For the two qualitative traits plotted in Figure 1.15, there are fewer p-values above the threshold,

and many of the signi�cant ones are located close to each other. The size of the lasso �t is corre-

spondingly smaller, and the large coe�cients pick up the important locations as before. However,

the nonzero coe�cients are still spread across the whole genome.
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(a) (b)

(c) (d)

Figure 1.14: Manhattan plots of the univariate p-values and lasso coe�cients for height (a, c) and BMI
(b, d). The vertical axis of the p-value plots shows � log10 (p) for each SNP, while the vertical axis of the
coe�cient plots shows the magnitude of the coe�cients from snpnet . The SNPs with relatively large lasso
coe�cients are highlighted in green. The red horizontal line on the p-value plot represents a reference level
of p = 5 � 10� 8 .
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